Cynthia K. Akaluka, Justinah C. Orji, Wesley Braide, Emmanuel Egbadon, Samuel A. Adeleye, Abattoir Wastewater Treatment and Energy Recovery Using a Ferricyanide-Catholyte Microbial Fuel Cell, Volume 55, International Letters of Natural Sciences (Volume 55)
    The capacity of Microbial fuel cells (MFCs) to produce voltage and concurrently treat abattoir waste water was investigated in MFCs that used 0.1M potassium ferricyanide (K3[Fe(CN)6] as catholytes. Physicochemical, electrochemical and Microbiological properties of the MFCs were monitored. The open circuit voltage (OCV) readings were taken at 3 hours interval and maximum OCV of 965mV was recorded. Also, The physicochemical characteristics of the MFCs revealed that the pH decreased by 0.2 after treatment; Chemical Oxygen demand, biochemical oxygen demand, total suspended solids, ammonia, and total nitrogen reduced by 88.4%, 65.56%, 43.88%, 60% and 60% respectively. However, Phosphate increased by 54%. The bacterial isolates from the raw abattoir wastewater were Staphylococcus aureus, Bacillus cereus, Bacillus subtilis, Enterococcus faecalis, Enterobacter aerogenes, Escherichia coli and Micrococcus luteus while Enterococcus faecalis, Bacillus cereus and Escherichia coli were isolated from the biofilms on the anode. Microbial fuel cells therefore have capacities for simultaneous waste water treatment and electricity generation.
    Anolyte, Catholyte, Ferricyanide, Microbial Fuel Cells, Physicochemical