P.U. Singare, Application of Nondestructive Radio Tracer Technique in Performance Evaluation of Anion Exchange Resins Duolite ARA-9366 and Duolite A-171, Volume 18, International Letters of Chemistry, Physics and Astronomy (Volume 18)
    Radio analytical technique as a non-destructive technique was used in the present investigation to trace the kinetics of ion-isotopic exchange reaction taking place in Duolite ARA-9366 (nuclear grade) and Duolite A-171 (non-nuclear grade) anion exchange resins. The kinetics data suggest that during iodide ion-isotopic exchange reactions under identical experimental conditions of 40.00C, 1.000 g of ion exchange resins and 0.003 M labeled iodide ion solution, the values of specific reaction rate (min-1), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log Kd were 0.176, 0.383, 0.067 and 7.8 respectively for Duolite ARA-9366 resin, which was higher than 0.142, 0.353, 0.050 and 7.0 respectively as that obtained for Duolite A-171 resins. Also it is observed that at a constant temperature of 40.0 °C, as the concentration of labeled iodide ion solution increases 0.001 M to 0.004 M, the percentage of iodide ions exchanged increases from 49.20% to 51.80% for Duolite ARA-9366 resins; and from 45.20% to 47.80% for Duolite A-171 resins. The similar trend was observed for the two resins during bromide ion-isotopic exchange reactions. The overall results indicate superior performance of Duolite ARA-9366 resins over Duolite A-171 resins under identical operational parameters.
    <sup>131</sup>I, <sup>82</sup>Br, Duolite A-171, Duolite ARA-9366, Ion-Isotopic Exchange Reactions, Non-Destructive Tracer Technique, Nuclear Grade Resin, Radio Analytical Technique, Radioactive Tracer Isotopes, Reaction Kinetics