Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

SFP > SFP Volume 7 > Impacts of Phosphorus as Soil Application on...
< Back to Volume

Impacts of Phosphorus as Soil Application on Growth, Yield and some Chemical Constitutes of Common Bean Plants Grown under Saline Soil Conditions

Full Text PDF

Abstract:

This study aimed to assess the impact of calcium superphosphate (P; 0, 100, and 200 kg per feddan) as soil amendments, in addition to the recommended P, on the growth traits, green and dry yields characteristics, leaf photosynthetic pigments, chlorophyll fluorescence, and leaf contents of nutrients of common bean (Phaseolus vulgaris L., cv. “Bronco”) plants grown under saline soil conditions. Two field trials were conducted at the Experimental Farm of Faculty of Agriculture, Fayoum University during the 2016 and 2017 summer seasons. The obtained results showed that, Na+ content was significantly declined, while the all other tested parameters such as growth characteristics (i.e., shoot length, number of leaves per plant, area of leaves per plant, and shoot fresh and dry weights), yield characteristics of green pods and dry seeds (i.e., average pod weight, number of pods per plant, pods weight per plant, dry seed weight per plant and 100-seed weight), leaf photosynthetic pigments (i.e., total chlorophylls, total carotenoids) contents and leaf chlorophyll fluorescence (i.e., Fv/Fm and PI), leaf contents of N, P, K+, and Ca2+, and the ratios of K+/Na+, Ca2+/Na+ and K++Ca2+/Na+ were significantly increased by the two tested P treatments compared to the controls (without more P than the recommended). The all tested treatments conferred, approximately, the same results. Therefore, results of this study recommend using P at 100 kg per feddan above the recommended dose to optimize the common bean performance in saline soils.

Info:

Periodical:
Sustainable Food Production (Volume 7)
Pages:
24-36
Citation:
M. A. S. El-Yazal et al., "Impacts of Phosphorus as Soil Application on Growth, Yield and some Chemical Constitutes of Common Bean Plants Grown under Saline Soil Conditions", Sustainable Food Production, Vol. 7, pp. 24-36, 2020
Online since:
February 2020
Export:
Distribution:
References:

[1] Broughton, W.J., Hernander, G., Blair, B., Beebe, S., Gepts, P., and Vanderleyden, J. (2003): Beans (Phaseolus spp.) – model food legumes. Plant Soil, 252: 55–128.

DOI: https://doi.org/10.1023/a:1024146710611

[2] Isaac, M.E., Harmand, J.M. and Drevon, J.J. (2011): Growth and nitrogen acquisition strategies of Acacia senegal seedlings under exponential phosphorus additions. J. Plant Physiol., 168: 776–781.

DOI: https://doi.org/10.1016/j.jplph.2010.10.011

[3] Wang, X.W., Vinocur, B., and Altman, A. (2003): Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218: 1–14.

DOI: https://doi.org/10.1007/s00425-003-1105-5

[4] Maas, E.V., and Hoffman, G.J. (1977): Crop salt tolerance–Current assessment. Journal of the Irrigation and Drainage Division – PUBDB, 103(2): 115–134.

[5] Bargaz, A., Nassar, R.M.A., Rady, M.M., Gaballah, M.S., Thompson, S.M., Brestic, M., Schmidhalter, U., and Abdelhamid, M.T. (2016): Improved salinity tolerance by phosphorus fertilizer in two Phaseolus vulgaris recombinant inbred lines contrasting in their P-efficiency. J. Agron. Crop Sci., 202: 497–507.

DOI: https://doi.org/10.1111/jac.12181

[6] Khan, M.I., R., Mughal, A., Iqbal, N., and Khan, N.A. (2013): Potentiality of sulphur containing compounds in salt stress tolerance. In: Parvaiz, A., Azooz, M. M., Prasad, M. N. V. (Eds.). Ecophysiology and responses of plants under salt stress. Chapter 17, p: 443–472, Springer.

DOI: https://doi.org/10.1007/978-1-4614-4747-4_17

[7] Asada, K. (1999): The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol., 50: 601–639.

DOI: https://doi.org/10.1146/annurev.arplant.50.1.601

[8] Hemida, Kh.A., Eloufey, A.Z.A., Seif El-Yazal, M.A., and Rady, M.M. (2017): Integrated effect of potassium humate and α-tocopherol applications on soil characteristics and performance of Phaseolus vulgaris plants grown on a saline soil. Arch. Agron. Soil Sci., 63: 1556–1571.

DOI: https://doi.org/10.1080/03650340.2017.1292033

[9] Yasar, F., Kusvuran, S., and Ellialtioǧlu, S. (2006): Determination of anti-oxidant activities in some melon (Cucumis melo L.) varieties and cultivars under salt stress. J. Hortic. Sci. Biotechnol., 81: 627–630.

DOI: https://doi.org/10.1080/14620316.2006.11512115

[10] Yildirim, B., Yaser, F., Ozpay, T., TurkOzu, D., Terzio lu, O., and Tamkoc, A. (2008): Variations in response to salt stress among field pea genotypes (Pisum sativum sp. arvense L.). J. Anim. Vet. Adv., 7: 907–910.

[11] Mishra, M., Mishra, P. K., Kumar, U., and Prakash, V. (2009): NaCl phytotoxicity induces oxidative stress and response of antioxidant system in Cicer arietinum L. cv. Abrodbi. Bot. Res. Intl., 2: 74–82.

[12] Hu, Y., and Schmidhalter, U. (2005): Drought and salinity: a comparison of their effects on the mineral nutrition of plants. J. Plant Nutr. Soil Sci., 168: 541–549.

DOI: https://doi.org/10.1002/jpln.200420516

[13] Vance, C.P. (2001): Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol., 127: 390–397.

DOI: https://doi.org/10.1104/pp.010331

[14] Vance, C.P., Uhde-Stone, C., and Allan, D.L. (2003): Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol., 157: 423–447.

DOI: https://doi.org/10.1046/j.1469-8137.2003.00695.x

[15] Cerda, A., Bingham, F.T., and Hoffman, G. (1977): Interactive effect of salinity and phosphorus on sesame. Soil Sci. Soc. Amer. J., 41: 915–918.

DOI: https://doi.org/10.2136/sssaj1977.03615995004100050021x

[16] L'taief, B., Bouaziz, S., Mainassara, Z., Ralf, H., Molina, C., Beebe, S., Winter, P., Kahl, G., Drevon, J.J., and Lachaâl, M., (2012): Genotypic variability for tolerance to salinity and phosphorus deficiency among N2-dependent recombinant inbred lines of Common Bean (Phaseolus vulgaris). Afr. J. Microbiol. Res., 6: 4205–4213.

DOI: https://doi.org/10.5897/ajmr10.720

[17] Page, A.I., Miller, R.H., and Keeney, D.R. (1982): Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties. 2nd Ed. American Society of Agronomy, Madison, Wisconsin, USA.

[18] Klute, A. (1986): Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods. 2nd Ed. Wisconsin, USA: American Society of Agronomy Madison.

[19] Dahnke, W.C., and Whitney, D.A. (1988): Measurement of soil salinity. In: Dahnke, W. C. (Ed.). Recommended Chemical Soil Test Procedures for the North Central Region. North Central Regional Publication 221. North Dakota Agric. Exp. St. Bull., 499: 32–34.

[20] Allen, R.G., Pereira, L.S., Raes, D., and Smith, M. (1998): Crop evapotranspiration guidelines for computing crop water requirements. Irrig. Drain., Paper 56, FAO, Rome, p.300.

[21] Abdelhamid, M.T., Rady, M.M., Osman, A.Sh., and Abdalla, M.S. (2013): Exogenous application of proline alleviates salt induced oxidative stress in Phaseolus vulgaris L. plants. J. Hortic. Sci. Biotechnol., 88: 439–446.

DOI: https://doi.org/10.1080/14620316.2013.11512989

[22] Jackson, M.L. (1967): Soil Chemical Analysis. Prentice Hall of India Pvt. Ltd, New Delhi, India, pp: 144–197, 326–338.

[23] Welburn, A.R., and Lichtenthaler, H. (1984): Formulae and program to determine total carotenoids and chlorophylls a and b leaf extracts in different solvents. In: Advances in photosynthesis research (Sybesma, C., Ed.), (2): 9–12.

DOI: https://doi.org/10.1007/978-94-017-6368-4_3

[24] Maxwell, K., and Johnson, G. N. (2000): Chlorophyll fluorescence–a practical guide. J. Exp. Bot., 51: 659–668.

[25] Clark, A.J., Landolt, W., Bucher, J.B., and Strasser, R.J. (2000): Beech (Fagus sylvatica) response to ozone exposure assessed with a chlorophyll a fluorescence performance index. Environ. Pollut., 109: 501–507.

DOI: https://doi.org/10.1016/s0269-7491(00)00053-1

[26] Hafez, A. R., and Mikkelsen, D.S. (1981): Colorimetric determination of nitrogen for evaluating the nutritional status of rice. Commun. Soil Sci. Plant Anal., 12: 61–69.

[27] Piper, C. S. (1947): Soil and plant analysis. Inter. Sci. Inc. Nc. USA.

[28] Chapman, H.D., and Pratt, P.F. (1961): Methods of Analysis for Soil, Plants and Water. University of California, Division of Agricultural Science, Berkeley, CA, USA, pp: 56–63.

[29] Lachica, M., Aguilar, A., and Yanez, J. (1973): Analisis Foliar. Métodos Utilizados enla EstaciLn Experimental del Zaidin, 32. Anales de Edafologia y Agrobiologia, p: 1033–1047.

[30] Gomez, K.A., and Gomez, A.A. (1984): Statistical Analysis Procedures for Agricultural Research. John Wiley and Sons, New York, NY, USA, pp: 25–30.

[31] Rady, M.M., Varma, B.C., and Howladar, S.M. (2013): Common bean (Phaseolus vulgaris L.) seedlings overcome NaCl stress as a result of presoaking in Moringa oleifera leaf extract. Sci. Hortic., 162: 63–70.

DOI: https://doi.org/10.1016/j.scienta.2013.07.046

[32] Semida, W.M., Taha, R.S., Abdelhamid, M.T., and Rady, M.M. (2014): Foliar-applied α-tocopherol enhances salt-tolerance in Vicia faba L. plants grown under saline conditions. S. Afr. J. Bot., 95: 24–31.

DOI: https://doi.org/10.1016/j.sajb.2014.08.005

[33] Semida, W.M., Abd El-Mageed, T.A., Howladar, S.M., and Rady, M.M. (2016): Foliar-applied α-tocopherol enhances salt-tolerance in onion plants by improving antioxidant defence system. Aust. J. Crop Sci., 10(7): 1835–2707.

DOI: https://doi.org/10.21475/ajcs.2016.10.07.p7712

[34] Xiong, L., and Zhu, J.K. (2002): Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ., 25: 131–139.

DOI: https://doi.org/10.1046/j.1365-3040.2002.00782.x

[35] Cicek, E., Yilmaz, F., and Yilmaz, M. (2010): Effect of N and NPK fertilizers on early field performance of narrow-leaved ash, Fraxinus angustifolia. J. Environ. Biol., 31(1‒2):109‒114.

[36] Waraich, E.A., Ahmad, Z., Ahmad, R., Saifullah, and Ashraf, M.Y. (2015): Foliar applied phosphorous enhanced growth, chlorophyll contents, gas exchange attributes and PUE in wheat (Triticum aestivum L.). J. Plant Nutr., 38(12):1929‒(1943).

DOI: https://doi.org/10.1080/01904167.2015.1043377

[37] Pandey, S.T., Singh, P., and Pandey, P. (2006): Site specific nutrient management for Withania somnifera at subtropical belt of Uttaranchal. Intl. J. Agric. Sci., 2:626‒628.

[38] Zapata, F., and Zaharah, A.R. (2002): Phosphate availability from phosphate rock and sewage sludge as influenced by addition of water soluble phosphate fertilizers. Nutr. Cycl. Agroecosyst., 2002(1); 63:43‒48.

[39] Epstein, E., and Bloom, AJ. (2004): Mineral nutrition of plants: Principles and perspectives (Second Edition). Sunderland, MA: Sinauer Associates, Inc.; 2004. 402p.

[40] Hudai, S.M.S., Sujauddin, M., Shafinat, S., and Uddin, M.S. (2007): Effects of phosphorus and potassium addition on growth and nodulation of Dalbergia sissoo in the nursery. J. For. Res., 18(4):279‒282.

DOI: https://doi.org/10.1007/s11676-007-0056-2

[41] Verma, R.K., Khatri, P.K., Bagde, M., Pathak, H.D., and Totet, N.G. (1996): Effect of biofertilizer and phosphorous on growth of Dalbergia sissoo. Ind. J. For., 19(3):244−246.

[42] Cakmak, I., Hengeler, C., Marschner, H. (1994): Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J. Exp. Bot., 45(9): 1245–1250.

DOI: https://doi.org/10.1093/jxb/45.9.1245

[43] Dawood, M.G., Abdelhamid, M.T., and Schmidhalter, U. (2014a): Potassium fertiliser enhances the salt-tolerance of common bean (Phaseolus vulgaris L.). J. Hort. Sci. Biotech., 89: 185–192.

DOI: https://doi.org/10.1080/14620316.2014.11513067

[44] Rady, M.M., Sadak, M.Sh., El-Lethy, S.R., Abd Elhamid, E.M., and Abdelhamid, M.T. (2015): Exogenous α-tocopherol has a beneficial effect on Glycine max (L.) plants irrigated with diluted sea water. J. Hortic. Sci. Biotechnol., 90(2): 195–202.

DOI: https://doi.org/10.1080/14620316.2015.11513172

[45] Abdelhamid, M.T., Shokr, M., and Bekheta, M.A. (2010): Growth, root characteristics, and leaf nutrients accumulation of four faba bean (Vicia faba L.) cultivars differing in their broomrape tolerance and the soil properties in relation to salinity. Commun. Soil Sci. Plant Anal., 41: 2713–2728.

DOI: https://doi.org/10.1080/00103624.2010.518263

[46] Dawood, M.G., Taie, H.A.A., Nassar, R.M.A., Abdelhamid, M.T., and Schmidhalter, U. (2014b): The changes induced in the physiological, biochemical and anatomical structure of Vicia faba by the exogenous application of proline under seawater stress. S. Afr. J. Bot., 93: 54–63.

DOI: https://doi.org/10.1016/j.sajb.2014.03.002

[47] Daughtry, C.S.T, Walthall, C.L., Kim, M.S., Brown de Colstoun, E., and McMurtrey, J.E. (2000): Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74(2): 229‒239.

DOI: https://doi.org/10.1016/s0034-4257(00)00113-9

[48] Bojovic, B., and Stojanovic, J. (2006): Some wheat leaf characteristics in dependence of fertilization. Kragujevac J. Sci., 28: 139‒146.

[49] Shubhra, Dayal, J., Goswami, C.L., and Munjal, R. (2004): Influence of phosphorus application on water relations, biochemical parameters and gum content in cluster bean under water deficit. Biol. Plant., 48(3): 445‒448.

DOI: https://doi.org/10.1023/b:biop.0000041101.87065.c9

[50] Dutt, S., Sharma, S.D., and Kumar, P. (2013): Inoculation of apricot seedlings with indigenous arbuscular mycorrhizal fungi in optimum phosphorus fertilization for quality growth attributes. J. Plant Nutr., 36(1): 15‒31.

DOI: https://doi.org/10.1080/01904167.2012.732648

[51] Celekli, A., Yavuzatmaca, M., and Bozkurt, H. (2009): Modeling of biomass production by Spirulina platensis as function of phosphate concentrations and pH regimes. Biores. Technol., 100(14): 3625‒3629.

DOI: https://doi.org/10.1016/j.biortech.2009.02.055

[52] Liang, X.L., Lin, Y.C., Nian, H., and Xie, L.X. (2005): The effect of low phosphorus stress on main physiological traits of different maize genotypes. Acta Agron. Sin., 31(5): 667‒669.

[53] Kiarostami, K.H., Mohseni, R., and Saboora, A. (2010): Biochemical changes of Rosmarinus officinalis under salt stress. J. Stress Physiol. Biochem., 6: 114–122.

[54] Cuin, T.A., Tian, Y., Betts, S.A., Chalmandrier, R., and Shabala, S. (2009): Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions. Funct. Plant Biol., 36: 1110–1119.

DOI: https://doi.org/10.1071/fp09051

[55] Ashraf, M., and Harris, P.J.C. (2004): Potential biochemical indicators of salinity tolerance in plants. Plant Sci., 166: 3–16.

DOI: https://doi.org/10.1016/j.plantsci.2003.10.024

[56] Gharsa, M.A., Parre, E., Debez, A., Bordenava, M., Richard, L., Leport, L., Bouchereau, A., Savoure, A., and Abdelly, C. (2008): Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+ selectivity and proline accumulation. J. Plant Physiol., 165: 588–599.

DOI: https://doi.org/10.1016/j.jplph.2007.05.014

[57] Marschner, H. (1995): Mineral Nutrition of Higher Plants. 2nd Ed. New York, NY, USA: Academic Press Publication, p: 559–579.

[58] Noreen, Z., Ashraf, M., and Akram, N.A. (2010): Salt-induced regulation of some key antioxidant enzymes and physio-biochemical phenomena in five diverse cultivars of turnip (Brassica rapa L.). J. Agron. Crop Sci., 196: 273–285.

DOI: https://doi.org/10.1111/j.1439-037x.2010.00420.x

[59] Lenis, J.M., Ellersieck, M., Blevins, D.G., Sleper, D.A., Nguyen, H.T., Dunn, D., Lee, J.D., and Shannon, J.G. (2011): Differences in ion accumulation and salt tolerance among glycine accessions. J. Agron. Crop Sci., 197: 302–310.

DOI: https://doi.org/10.1111/j.1439-037x.2011.00466.x

[60] Munns, R., and Tester, M. (2008): Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59: 651–681.

DOI: https://doi.org/10.1146/annurev.arplant.59.032607.092911

[61] Kuiper, P.J.C. (1984): Functioning of plant cell membrane under saline conditions: membrane lipid composition and ATPases. In: R.C. Staples, and G.H. Toenniessen, eds. Salinity Tolerance in Plant: Strategies for Crop Improvement, p.77–91. John Wiley and Sons, Inc., New York, NY, USA.

[62] Malik, R.S., Gupta, A.P., Haneklaus, S., and El-Bassam, N. (1999): Role of phosphorus (P) in inducing salt tolerance in sunflower. Landbauforsch. Völk., 49: 169–176.

[63] Grattan, S.R., and Grieve, C.M. (1993): Mineral nutrient acquision and response by plants in saline environment. In: M. Pessarakali, ed. Handbook of Plant and Crop Stress, p.203–266. Marcel Dekker, Inc., New York, NY, USA.

Show More Hide
Cited By:
This article has no citations.