This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] E. O. Ajayi, I. B. Adeoye, O. A. Shittu, Economic analysis of intercropping okra with legumes, Journal of Agricultural Sciences. 62(2) (2017) 193-202.
DOI: https://doi.org/10.2298/jas1702193a[2] Nihort. (1985). Effect of spacing and different rates of nitrogen fertilizer on seed yield of okra (Abelmoschus esculentus L. Monech). Nihort Vegetable Programme Annual Report.
[3] J. Jalilian, A. Najafabadi, M. R. Zardashti, Intercropping patterns and different farming systems affect the yield and yield components of safflower and bitter vetch, Journal of Plant Interactions. 12(1) (2017) 92-99.
DOI: https://doi.org/10.1080/17429145.2017.1294712[4] A. Bationa, B. Ntare, Rotation and nitrogen fertilizer effects on pearl millet, cowpea and groundnut yield and soil chemical properties in a sandy soil in the semi-arid tropics, West Africa, Journal of Agricultural Science, Cambridge. 134 (2000) 277-284.
DOI: https://doi.org/10.1017/s0021859699007650[5] F. M. Itulya, V. N. Mwaja, J. B. Masiunas, Collard-cowpea intercrop response to nitrogen fertilization, redroot pigweed density, and collard harvest frequency, Horticultural Science. 32(5) (1997) 850-853.
DOI: https://doi.org/10.21273/hortsci.32.5.850[6] M. Wang et al., Growth, chlorophyll content and combined output value in eggplant/garlic relay intercropping systems, Pakistan Journal of Botany. 47(5) (2015) 1727-1734.
[7] V, Balasubramanian, L, Sekayange, Area harvests equivalency ratio for measuring efficiency in multiseason intercropping, Agronomy Journal. 82 (1990) 519-522.
DOI: https://doi.org/10.2134/agronj1990.00021962008200030016x[8] H. G. Zyada, Growth, Yield and its Components, Chemical constituents, correlation coefficient and competition indices of okra and cowpea as influenced by different intercropping systems, Middle East Journal of Agriculture Research. 5(4) (2016) 726-738.
[9] P. Choudhuri, Growth, yield, quality and economic impacts of intercropping in vegetable and spice crops, Ph.D. thesis, Department of Vegetable and Spice Crops., Uttar Banga Kirishi Viswavidyalaya., West Bengal, India, (2011).
DOI: https://doi.org/10.23910/ijbsm/2016.7.4.1398b[10] I. I. Ibeawuchi, J. C. Obiefuna, M. C. Ofoh, Effect of row spacing on yield and yield components of okra (Abelmoschus esculentus) and mixture groundnut (Archis hypogaea), Journal of Agronomy. 4(4) (2005) 304-307.
DOI: https://doi.org/10.3923/ja.2005.304.307[11] I. L. Hamma, S. M. Yusuf, U. D. Idris, Evaluation of maize (Zea Mays L.) and okra (Abelmoschus Esculentus (L.) Moench) intercropping system at Samaru, Zaria, Global Journal of Advanced Research. 2(1) (2015) 16-22.
[12] P. Choudhuri, J. C. Jana, Intercropping in okra for sustainable vegetable production, International Journal of Bio-resource and Stress Management. 7(4) (2016) 837-840.
DOI: https://doi.org/10.23910/ijbsm/2016.7.4.1398b[13] J. N. Odedina et al., Evaluation of cowpea varieties (Vigna unguiculata L.Walp) for intercropping with okra (Abelmoschus esculentus L. Monech), American Journal of Research Communication. 2(2) (2014) 91-108.
[14] M. E. Madisa et al., Effects of plant spacing on the growth, yield and yield components of okra (Abelmoschus esculentus L.) in Botswana, American Journal of Experimental Agriculture. 6(1) (2015) 7-14.
DOI: https://doi.org/10.9734/ajea/2015/14199[15] M. Ijoyah, D. Dzer, Yield performance of okra (Abelmoschus esculentus L. Moench) and maize (Zea mays L.) as affected by time of planting maize in Makurdi, Nigeria, International Scholarly Research Network Agronomy. 1 (2012) 1-7.
DOI: https://doi.org/10.5402/2012/485810[16] D. S. Kumar et al., A review: Abelmoschus esculentus (okra), International Research Journal of Pharmaceutical and Applied Sciences. 3(4) (2013) 129-132.
[17] M. O. Akande et al., Response of maize (Zea mays) and okra (Abelmoschus esculentus) intercrop relayed with cowpea (Vigna unguiculata) to different levels of cow dung amended phosphate rock, World Journal of Agricultural Sciences. 2(1) (2006) 119-122.
[18] M. O. Ijoyah, U. A. Usman, Okra: a potential intercrop for farmers in Nigeria, Journal of Global Biosciences. 2(6) (2013) 222-235.
[19] O. A. Agba et al., Effects of spacing on the growth and yield of okra (Abelmoschus esculentus L.) moench in Obubra, cross river state, Global Journal of Agricultural Sciences. 10(1) (2011) 57-61.
[20] B. Liu et al., Plant leaf chlorophyll content retrieval based on a field imaging spectroscopy system, Sensors. 14 (2014) 19910-19925.
DOI: https://doi.org/10.3390/s141019910[21] H. Sevik et al., Change to amount of chlorophyll on leaves depend on insolation in some landscape plants, International Journal of Environmental Sciences. 3(3) (2012) 1057-1064.
[22] Y. Li et al., Factors influencing leaf chlorophyll content in natural forest at the biome scale, Frontiers in Ecology and Evolution. 6(64) (2018) 1-10.
[23] A. H. Arzai, B. S. Aliyu, The relationship between canopy width, height and trunk size in some tree species growing in the Savana zone of Nigeria, Bayero Journal of Pure and Applied Sciences. 3(1) (2010) 260-263.
DOI: https://doi.org/10.4314/bajopas.v3i1.58808[24] R. K. Sharaiha, N. A. Hadidi, Environmental impact on yield of pea and okra grown under intercropping, Seria Agronomie. 50 (2015) 313-323.
[25] S. A. Qasim et al., Effect of pea intercropping on biological efficiencies and economics of some non - legume winter vegetables, Pakistan Journal of Agricultural Sciences. 50(3) (2013) 399-406.
[26] S. A. John, C. Mini, Biological efficiency of intercropping in okra (Abelmoschus esculentus (L.) Monech), Journal of Tropical Agriculture. 43(1-2) (2005) 33-36.
[27] H. A. Akintoye, A.G. Adebayo, O. O. Aina, Growth and yield response of okra intercropped with live mulches, Asian Journal of Agricultural Research. 5(2) (2011) 146-153.
DOI: https://doi.org/10.3923/ajar.2011.146.153[28] A. Singh et al., Reduce pests, enhance production: benefits of intercropping at high densities for okra farmers in Cameroon, Pest Management Science. 73 (2017) 2017-2027.
DOI: https://doi.org/10.1002/ps.4636[29] F. O. Oroka et al., Biological efficiency of okra and Celosia intercrop as influenced by inter-row spacing, Journal of Agriculture and Food Environment. 3(2) (2016) 52-63.
[30] C. H. Onwuchekwa, C. Muoneke, Effect of intercropping and poultry manure rates on the growth and yield of maize and okra, International Journal of Advanced Research. 4(4) (2016) 28-36.
DOI: https://doi.org/10.21474/ijar01/106[31] K. Sivaraman, S.P. Palaniappan, Turmeric-maize and onion intercropping systems. I.yield and land use efficiency, Journal of Spices and Aromtic Crops. 3(1) (1994) 19-27.
[32] T.U. Esekhade et al., Potential of multiple cropping systems in young rubber plantation, Journal of Sustainable Agriculture. 22(4) (2003) 79-94.
[1] A. Eltigani, A. Müller, B. Ngwene, E. George, "Physiological and Morphological Responses of Okra (Abelmoschus esculentus L.) to Rhizoglomus irregulare Inoculation under Ample Water and Drought Stress Conditions Are Cultivar Dependent", Plants, Vol. 11, p. 89, 2021
DOI: https://doi.org/10.3390/plants11010089[2] R. Nath, G. Komala, P. Fantke, S. Mukherjee, "Dissipation kinetics, residue modeling and human intake of endosulfan applied to okra (Abelmoschus esculentus)", Science of The Total Environment, Vol. 835, p. 155591, 2022
DOI: https://doi.org/10.1016/j.scitotenv.2022.155591[3] R. Nath, G. Komala, P. Fantke, S. Mukherjee, "Dissipation kinetics, residue modeling and human intake of endosulfan applied to okra (Abelmoschus esculentus)", Science of The Total Environment, Vol. 835, p. 155591, 2022
DOI: https://doi.org/10.1016/j.scitotenv.2022.155591[4] R. Nath, G. Komala, P. Fantke, S. Mukherjee, "Dissipation kinetics, residue modeling and human intake of endosulfan applied to okra (Abelmoschus esculentus)", Science of The Total Environment, Vol. 835, p. 155591, 2022
DOI: https://doi.org/10.1016/j.scitotenv.2022.155591[5] R. Nath, G. Komala, P. Fantke, S. Mukherjee, "Dissipation kinetics, residue modeling and human intake of endosulfan applied to okra (Abelmoschus esculentus)", Science of The Total Environment, Vol. 835, p. 155591, 2022
DOI: https://doi.org/10.1016/j.scitotenv.2022.155591