This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] L.J. Anil, R.H. Phipps, The potential of forage-maize intercrops in ruminant nutrition, Animal Feed Science and Technology. 85 (2000) 157-164.
DOI: https://doi.org/10.1016/s0377-8401(00)00176-0[2] J.A. Cusicanqui, J.G. Lauer, Plant density and hybrid influence on corn forage yield and quality, Agro. J. 91 (1999) 911-915.
DOI: https://doi.org/10.2134/agronj1999.916911x[3] M. Koutsika- Sotiriou, Hybrid seed production in maize, in: A.S. Basra (Ed.), Heterosis and hybrid seed production in agronomic crops, Food Products Press, NewYork, 1999, pp.25-64.
[4] M. Cooper et al., Breeding drought-tolerant maize hybrids for the US corn-belt: Discovery to product, J. Exp. Bot. (2014)..
[5] I. Ahuja, R.C. de Vos A.M. Bones, Plant molecular stress responses face climate change, Trends Plant Sci. 15 (2010) 664–674.
DOI: https://doi.org/10.1016/j.tplants.2010.08.002[6] R. Ngara, R. Ndimba J.B. Jensen, Identification and profiling of salinity stress-responsive proteins in Sorghum bicolor seedlings, J. Proteomics. 75 (2012) 4139–4150.
DOI: https://doi.org/10.1016/j.jprot.2012.05.038[7] W. Schlenker, M.J. Roberts, Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change, Proc. Nat. Acad. Sci. USA. 106 (2009) 15594–15598.
DOI: https://doi.org/10.1073/pnas.0906865106[8] J.D. Oster, R. C. Reeve M. Fireman, Salt problems in relation to irrigation, In: Irrigation of agricultural lands (ed. by R. M. Hagen), Agronomy J. 11 (1967) 988-1008.
DOI: https://doi.org/10.2134/agronmonogr11.c56[9] K. H. Amer, Corn crop response under managing different irrigation and salinity levels, Agric. Water Manage. 97 (2010)1553-1563.
DOI: https://doi.org/10.1016/j.agwat.2010.05.010[10] FAO, The use of saline waters for crop production - FAO irrigation and drainage paper 48, Available: http://www.fao.org/docrep/t0667e/t0667e00.HTM. (2000).
[11] A.B. Elahmadi, A.B. Elahmadi, A proposal for the release of two maize hybrids for the irrigated central clays of Sudan, A paper submitted to the Variety Release Committee, Khartoum, Sudan. (2012) 1-12.
[12] A.E. Kambal, Comparative performance of some varieties of sorghum, maize and pearl millet for forage production, Sudan Agricultural Journal. 10 (1984) 46-60.
[13] W.G. Cochran, G.M. Cox, Experimental designs, 2nd edn. John Wiley and Sons, Inc. New York. (1957) 293-316.
[14] Genstat, Ninth edition. Version – 9.1.0.174.Lawes Agricultural Trust (Rothamsted Experimental Station) VSN International, Hertfordshire (2011).
[15] B. Bojović et al., Effects of NaCl on seed germination in some species from families Brassicaceae and Solanaceae, Kragujevac Journal of Science. 32 (2010) 83-87.
[16] FAO, FAOSTAT, Food and Agricultural Organization of the United National http://www.feedipedia.org/node/5351. (2011).
[17] I.S. Afzal et al., Improving germination and seedling vigour in wheat by haloprimingunder saline conditions, Pakistan Journal of Agricultural Sciences. 44 (2007) 40– 49.
[18] R. Munns, Comparative physiology of salt and water stress, Plant Cell Environ. 25 (2002) 239-250.
[19] J.O. Payero et al., Effect of timing of a deficit–irrigation allocation on corn evapotranspiration, yield, water use efficiency and dry mass, Agricultural Water Management. 96 (2009) 1387–1397.
DOI: https://doi.org/10.1016/j.agwat.2009.03.022[20] M.B. Khan, H.A. Nazim, I.B. Muammad, Effect of water stress on growth and yield component of maize varieties, Research science. 12 (2001) 15-18.
[21] FAO, Crop water requirements under arid condition, Dallyn. P.M, more food from better technology, Rome. (1983) 383-392.
[22] H.E. Elawad, Growth and Production of Maize (Zea mays L.) as Affected by Water Treatment, Organic and Inorganic Fertilizers M. Sc. Thesis, Faculty of Agric. U. of K., Sudan. (2007).
[23] M.A. Ibrahiem et al., Proceedings of the Meetings of the National Crop Husbandry Committee 39th, Agricultural Research Corporation, Wad Medani, Sudan. (2005) 105-125.
[24] M. Ashraf, M. Hafeez, Thermo tolerance of pearl millet and maize at early growth stages: growth and nutrient relations, Biol. Plant. 48 (2004) 81-86.
DOI: https://doi.org/10.1023/b:biop.0000024279.44013.61[25] R.S. Dubey, Photosynthesis in plants under stressful conditions, in: M. Pessarakli (Ed.), Handbook of Photosynthesis, 2nd edition, CRC press, Boca Roton, Florida, 2005, pp.717-737.
[26] S. H. Kim et al., Temperature dependence of growth, development and photosynthesis in maize under elevated CO2, Environ. Exp. Bot. 61 (2007) 224-236.
[27] A. Wahid et al., Heat tolerance in plants: An overview, Environ. Exp. Bot. 61 (2007) 199–223.
[28] Z. Ristic et al., Rubisco activase and wheat productivity under heat stress conditions, J. Exp. Bot. 60 (2009) 4003-404.
[29] T. Hussain et al., Breeding potential for high temperature tolerance in corn (Zea mays L.), Pakistan J. Bot. 38 (2006) 1185–1195.
[30] K. L. Smith, Ohio Agron. Guide, Corn prod. Ohio state Univ. USA, bulletin: 472, Steel, R. G. D., Torrie J. H., Deekey. D. A., 1997. Principles and procedures of Statistics, A Biometrical Approach, 3rd ED. Mc Graw Hill Book, Int. Co. New York. (1996) 400-428.
[31] R.W. Heiniger, The impact of early drought on corn yield. Raleigh, NC: North Carolina State University. (2001) Available: http://www.ces.ncsu.edu/plymouth/cropsci/docs/early_drought_impact_on_corn.html.
[32] M. I. Mohammed et al., A proposal for the release of two Egyptian maize hybrids for the irrigated sector in Northern and Central Sudan, A paper submitted to the Variety Release Committee, Khartoum, Sudan. (2013) 1-16.
[33] E.V. Maas, G.J. Hoffman, Crop salt tolerance - current assessment, Journal of the Irrigation and Drainage. 103 ( 1977) 115–134.