This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] G. Shabir et al., Rice molecular markers and genetic mapping: Current status and prospects, Journal of Integrative Agriculture. 16 (2017) 1879–1891.
[2] S. Bajaj, A. Mohanty, Recent advances in rice biotechnology - Towards genetically superior transgenic rice, Plant Biotechnology Journal. 3 (2005) 275–307.
DOI: https://doi.org/10.1111/j.1467-7652.2005.00130.x[3] S.S. Virmani, M. Ilyas-Ahmed, Rice breeding for sustainable production, in: M.S. Kang, P.M. Priyadarshan (Eds.), Breeding Major Food Staples, Blackwell Publishing Inc., Iowa, USA, 2007, p.109–140.
DOI: https://doi.org/10.1002/9780470376447.ch6[4] B.C.Y. Collard, D.J. Mackill, Marker-assisted selection: an approach for precision plant breeding in the twenty-first century, Philosophical Transactions of the Royal Society B. 363 (2008) 557–572.
DOI: https://doi.org/10.1098/rstb.2007.2170[5] IRRI, World Rice Statistics: On-line Query Facility. Available: http://ricestat.irri.org:8080/wrsv3/entrypoint.htm.
[6] M.A.J. Parry et al., Mutation discovery for crop improvement, Journal of Experimental Botany. 60 (2009) 2817–2825.
[7] R.J. Brooker, Gene mutation and DNA repair, in: P.E. Reidy (Eds.), Genetics analysis and principles, McGraw-Hill, New York, USA, 2009, p.424–443.
[8] Y. Oladosu et al., Principle and application of plant mutagenesis in crop improvement: A review, Biotechnology and Biotechnological Equipment. 30 (2016) 1–16.
[9] Q.Y. Shu, B.P. Forster, H. Nakagawa. Principles and applications of plant mutation breeding, in: Q.Y. Shu, B.P. Forster, H. Nakagawa (Eds.), Plant mutation breeding and biotechnology, CABI Publishing, Wallingford, 2012, p.301–324.
DOI: https://doi.org/10.1079/9781780640853.0301[10] The Joint FAO/IAEA Mutant Varieties Database. Available: https://mvd.iaea.org.
[11] P. Suprasanna, S.J. Mirajkar, S.G. Bhagwat, Induced mutations and crop improvement, in: B. Bahadur et al. (Eds.), Plant Biology and Biotechnology, Springer, New Delhi, 2015, p.59–617.
DOI: https://doi.org/10.1007/978-81-322-2286-6_23[12] A. Riaz, A. Gul, Plant mutagenesis and crop improvement, in: K. Hakeem (Eds.), Crop Production and Global Environmental Issues, Springer, Cham, 2015, p.181–209.
DOI: https://doi.org/10.1007/978-3-319-23162-4_8[13] P. Sikora et al., Mutagenesis as a tool in plant genetics, functional genomics, and breeding. International journal of plant genomics. 13 (2011).
[14] T.T.T. Anh et al., Identification of phenotypic variation and genetic diversity in rice (Oryza sativa L.) mutants, Agriculture. 8 (2018) 30.
DOI: https://doi.org/10.3390/agriculture8020030[15] E.P. Guimarães, Rice breeding, in: M.J. Carena (Ed.), Cereals, the Banks and the Italian Economy, Springer, New York, USA, 2009, p.99–126.
[16] B.S. Ahloowalia, M, Maluszynski, K. Nichterlein, Global impact of mutation-derived varieties, Euphytica. 1352 (2004) 187–204.
DOI: https://doi.org/10.1023/b:euph.0000014914.85465.4f[17] R. Pathirana, Plant mutation breeding in agriculture, CAB previews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources. 6 (2011), 107–126.
DOI: https://doi.org/10.1079/pavsnnr20116032[18] S. Prasanna, S.M. Jain, Mutant Resources and Mutagenomics in crop plants, Emirates Journal of Food and Agriculture. 29 (2017) 651–657.
DOI: https://doi.org/10.9755/ejfa.2017.v29.i9.86[19] H. Satoh et al., Isolation and characterization of starch mutants in rice, Journal of Applied Glycoscience Supplement. 50 (2003) 225-230.
[20] S.D. Johnson et al., Field evaluation of mutagenized rice material, in: J. Jankowicz-Cieslak et al., (Eds.), Biotechnology plant mutation breeding, Springer Nature Switzerland, 2017, p.145–157.
DOI: https://doi.org/10.1007/978-3-319-45021-6_9[21] N. Uphoff et al., Improving the phenotypic expression of rice genotypes: Rethinking intensification, for production systems and selection practices for rice breeding, The Crop Journal. 3 (2015) 174–189.
DOI: https://doi.org/10.1016/j.cj.2015.04.001[22] J.M. Poehlman, Breeding rice, in: J.M. Poehlman, D.A. Sleper (Eds.), Breeding rice field crops, Springer Dordrecht, New York, USA, 1987, p.343–374.
DOI: https://doi.org/10.1007/978-94-015-7271-2_15[23] J.D. Abacar et al., Variation in yield and physicochemical quality traits among mutants of Japonica rice cultivar Wuyujing 3, Rice Science. 23 (2006) 33–41.
DOI: https://doi.org/10.1016/j.rsci.2016.01.004[24] S.D. Koutroubas et al., Grain quality variation and relationships with morpho-physiological traits in rice (Oryza sativa L.) genetic resources in Europe, Field Crops Research. 86 (2004) 115–130.
DOI: https://doi.org/10.1016/s0378-4290(03)00117-5[25] Z.Xu et al., Correlations between rice grain shapes and main qualitative characteristics, Acta Agronomica Sinica. 30 (2004) 894–900.
[26] R. Huang et al., Genetic bases of rice grain shape: So many genes, so little known, Trends Plant Science. 18 (2013) 218–226.
DOI: https://doi.org/10.1016/j.tplants.2012.11.001[27] W.M. Edzesi et al., Genetic diversity and elite allele mining for grain traits in rice (Oryza sativa L.) by association mapping, Frontier Plant Science. 7 (2016) 1–13.
[28] J. Lou et al., QTL mapping of grain quality traits in rice, Journal Cereal Science. 50 (2009) 145–151.
DOI: https://doi.org/10.1016/j.jcs.2009.04.005[29] S.D. Kumbhar et al., Genetic diversity and population structure in landraces and improved rice varieties from India, Rice Science. 22 (2005) 99–107.
DOI: https://doi.org/10.1016/j.rsci.2015.05.013[30] K.F.M. Salem, A. Sallam, Analysis of population structure and genetic diversity of Egyptian and exotic rice (Oryza sativa L.) genotypes, Comptes Rendus Biologies. 339 (2016) 1–9.
DOI: https://doi.org/10.1016/j.crvi.2015.11.003[31] F.S.G. Hashemi et al., The genetic and molecular origin of natural variation for the fragrance trait in an elite Malaysian aromatic rice through quantitative trait loci mapping using SSR and gene-based markers, Gene. 555 (2015) 101–107.
DOI: https://doi.org/10.1016/j.gene.2014.10.048[32] S.F. Lo et al., Genetic resources offer efficient tools for rice functional genomics research, Plant Cell Environment. 39 (2016) 998–1013.
[33] P. Krishnan et al., High-temperature effects on rice growth, yield, and grain quality, in: D.L. Sparks, (Eds.), Advances in Agronomy, Elsevier Inc., Academic Press, 2011, p.87–206.
[34] M. Kurowska et al., Molecular analysis of point mutations in a barley genome exposed to MNU and Gamma rays, Mutation Research. 738–739 (2012) 52–70.
DOI: https://doi.org/10.1016/j.mrfmmm.2012.08.008[35] T. Suzuki et al., MNU-induced mutant pools and high-performance TILLING enable finding of any gene mutation in rice, Molecular Genetics and Genomics. 279 (2008) 213–223.
DOI: https://doi.org/10.1007/s00438-007-0293-2[36] P.J. Russel, Extensions of and deviation from Mendelian genetic principles, in: B. Wilbur (Ed.), iGenetics: A Molecular Approach, Pearson Benjamin Cummings San Francisco, USA, 2010, p.363–393.
[1] K. Kakar, T. Xuan, N. Quan, I. Wafa, H. Tran, T. Khanh, T. Dat, "Efficacy of N-methyl-N-nitrosourea (MNU) Mutation on Enhancing the Yield and Quality of Rice", Agriculture, Vol. 9, p. 212, 2019
DOI: https://doi.org/10.3390/agriculture9100212[2] C. Huong, T. Anh, H. Tran, V. Duong, N. Trung, T. Dang Khanh, T. Dang Xuan, "Assessing Salinity Tolerance in Rice Mutants by Phenotypic Evaluation Alongside Simple Sequence Repeat Analysis", Agriculture, Vol. 10, p. 191, 2020
DOI: https://doi.org/10.3390/agriculture10060191[3] Z. Noori, A. Qarluq, K. Kakar, S. Abdiani, N. Nawakht, "Structural Features of White-Belly and White-Core Rice Endosperm Under Scanning Electron Microscopic Observation", Agricultural Research, 2022
DOI: https://doi.org/10.1007/s40003-022-00618-7