Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

JHPR > JHPR Volume 13 > Effect of NPK Fertilizer Rates on Growth and Yield...
< Back to Volume

Effect of NPK Fertilizer Rates on Growth and Yield of Field and Greenhouse Grown Pepino Melon (Solanum muricatum Aiton)

Full Text PDF

Abstract:

Pepino melon (Solanum muricatum Ait.) is an exotic vegetable whose consumption is on the increase in Kenya due to its health and nutritional benefits. A study was conducted at Egerton University, Kenya in 2018-2019 to investigate the effect of NPK fertilizer rates (0, 100, 200. 300 and 400 kg ha-1) on growth and yield of field and greenhouse grown pepino melons. The experiment was laid in a randomized complete block design with three replications. Data was recorded on plant height, stem diameter, number of leaves per bush, number of branches, days to 50% flowering, fruit weight and total yield. Data were analyzed using analysis of variance with the SAS statistical package. Significant means were separated using Tukey’s Honestly Significant Difference at p ≤ 0.05. Results indicated that NPK fertilizer rates and growing environment influenced growth and yield of pepino melon. At 100 DAP plants grown in the greenhouse and supplied with 200 kg NPK ha-1 had a stem diameter of 14.01 mm which was significantly bigger p ≤ 0.05 compared to those grown in the field and supplied with 300 kg NPK ha-1 with a stem diameter of 11.71 mm in trial two. Application of 300 kg NPK ha-1 for field grown pepino melons gave the highest yield of 1102.48 kg ha-1 and 1060.55 kg ha-1 in trial one and two respectively. In conclusion, application of 300 kg ha-1 of NPK fertilizer for field grown pepino melon is recommended.

Info:

Periodical:
Journal of Horticulture and Plant Research (Volume 13)
Pages:
10-23
Citation:
C. Mutua et al., "Effect of NPK Fertilizer Rates on Growth and Yield of Field and Greenhouse Grown Pepino Melon (Solanum muricatum Aiton)", Journal of Horticulture and Plant Research, Vol. 13, pp. 10-23, 2021
Online since:
July 2021
Export:
Distribution:
References:

[1] G. Sudha, et al., Antioxidant activity of ripe pepino fruit (Solanum muricatum Aiton). Int. J. Pharmaceutical Sci. 3 (2011) 257-261.

[2] S. Huyskens-Keil, et al., Postharvest quality of pepino (Solanum muricatum Ait.) fruit in controlled atmosphere storage, J. Food Eng. 77 (2006) 628–634.

DOI: https://doi.org/10.1016/j.jfoodeng.2005.07.028

[3] C. Munoz, et al., Genetic variability in Chilean pepino (Solanum muricatum Aiton) fruit, Chilean J. Agricul. Res. 74 (2014) 143-147.

DOI: https://doi.org/10.4067/s0718-58392014000200003

[4] D. Kahuro, Pepino melon cost analysis and returns. Retrieved on 28th March, 2020 from https://dicksonkahuro.wordpress.com, (2017).

[5] D. Martinez-Romero, M. Serrano, D. Valero, Physiological changes in pepino (Solanum muricatum Ait.) fruit stored at chilling and non-chilling temperatures, Postharvest Biol. Technol. 30 (2003) 117–86.

DOI: https://doi.org/10.1016/s0925-5214(03)00106-6

[6] L. Diaz, Industrializaci ´on y aprovechamiento de productos y sub-productos derivados de materias primas agropecuarias de la regi ´on de Coquimbo. 1st ed. Santiago: LOM ediciones Ltda, (2006).

[7] M. M. Oczan, O. Arslan, Bioactive and some nutritional characteristics of pepino (Solanum muricatum Aiton) fruit, J. Agricul. Sci. Technol. 1 (2011) 133-137.

[8] A. Shaheen, et al., Integrated soil management in eroded land augments the crop yield and water-use efficiency, Acta Agricul. Scie. Soil and Plant Sci. 60(3) (2010) 274 – 282.

DOI: https://doi.org/10.1080/09064710902960259

[9] W. Liu, et al., Influence of nitrogen on the primary and secondary metabolism and synthesis of flavonoids in Chrysanthemum morifolium ramat, J. Plant Nutri. 33(2) (2010) 240-254.

[10] S. E. Obalum, et al., Soil Degradation-Induced Decline in Productivity of Sub-Saharan African Soils: The Prospects of Looking Downwards the Lowlands with the Sawah Ecotechnology, Appl. Environ. Soil Sci. 2012: 1-10.

DOI: https://doi.org/10.1155/2012/673926

[11] E. O. Uyovbisere, V. O. Chude, A. Bationo, Promising nutrient ratios in the fertilizer formulations for optimal performance of maize in the Nigerian Savanna. The need for a review of current recommendations, Nigerian J. Soil Res. 1 (2000) 29-34.

[12] R. Jaetzold, H. Schmidt, Farm management handbook of Kenya, Natural conditions and farm management information, Ministry of Agriculture Kenya, (2006).

[13] FAO, Neglected Crops: 1492 from a different perspective, FAO plant production and protection series, No. 26 ISBN 92-5-103217-3, (1994).

[14] J. R. Okalebo, K. W. Gathua, P. L. Woomer, Laboratory methods of soil and water analysis: A working manual, Second edition, 2002, 128 pp.

[15] Z. Cong, H. Lu, G. Ni, A simplified dynamic method for field capacity estimation and its parameter analysis, Water Sci. Eng. 7(4) (2014) 351-362.

[16] T. K. Lim, Fruits. In T. K. Lim (Ed.), Edible Medicinal and Non-medicinal plants, Retrieved from http://www.springer.com>book pp.390-394, (2013).

[17] SAS Institute. Step by Step Basic Statistics Using SAS; Student Guide; Version 9.1 Cary, SAS Institute Inc., North Carolina, 2005, USA. 40 pp.

[18] M. Lego, D. Singh, S. Tsanglao, Effect of different levels of NPK on growth, yield and economic of capsicum (Capsicum annuum L.) CV Asha under shade net house cultivation, Internat. J. Agric. Sci. Res. 6(4) (2016) 5-8.

[19] M. S. Dhaliwal et al., Growth and yield of bell pepper as influenced by growing environment, mulch and planting date, J. Crop Improv. 31(6) (2017) 830-846.

DOI: https://doi.org/10.1080/15427528.2017.1391146

[20] K. O. Sanni, Effect of compost, cow dung and NPK 15-15-15 fertilizer on growth and yield of Amaranth (Amaranthus hydridus), Internat. J. Advances in Scientific Res. 2(3) (2016) 76-82.

DOI: https://doi.org/10.7439/ijasr.v2i3.3148

[21] H. Iqtidar, K. M. Ayyaz, K. E. Ahmad, Bread Wheat Varieties as Influenced by Different Nitrogen Levels, J. Zhejiang University Sci. 7(1) (2006) 70-78.

DOI: https://doi.org/10.1631/jzus.2006.b0070

[22] I. N. Saeed, K. Abbasi, M. Kazim, Response of maize (Zea nmays) to nitrogen and phosphorus fertilization under agro-climatic condition of Rawalokot Azad Jammu and Kashmir, Pakistan J. Biol. Sci. 4 (2001) 53-55.

DOI: https://doi.org/10.3923/pjbs.2001.949.952

[23] A. K. G. Godia, Evaluation of some introduced fresh market tomato (Solanum lycopersicum L.) for genetic variability and adaptability in Ghana using morphological and molecular markers, MSc. Thesis, Kwame Nkurumah University of Science and Technology, Kumasi, Ghana, (2014).

[24] M. R. Naik, C. H. Ruth, C. H. Chinnabbai, Growth, flowering and yield response of tomato varieties under polyhouse conditions, Internat. J. Pure Appl. Biosci. 6(1) (2018) 1303-1307.

DOI: https://doi.org/10.18782/2320-7051.5942

[25] K. M. Babatunde, et al., Effects of individual and combined application of organic plus NPK (15:15:15) fertilizer on the growth parameters of tomato (Lycopersicon esculentum Mill), J. Agric. Hort. Res. 2(1) (2019) 1-5.

DOI: https://doi.org/10.33140/jahr.02.01.08

[26] A. K. Nafiu, et al., Effects of NPK fertilizer on growth, drymatter production and yield of eggplant in southwestern Nigeria, Agric. Biol. J. N. Am. 2(7) (2011) 1117-1125.

DOI: https://doi.org/10.5251/abjna.2011.2.7.1117.1125

[27] K. Okonwu, S. I. Mensah, Effects of NPK (15:15:15) on some growth indices of pumpkin, Asian J. Agric. Res. 6(3) (2012) 137-143.

DOI: https://doi.org/10.3923/ajar.2012.137.143

[28] P. M. Gloria, et al., Effect of different levels of NPK fertilizer on the growth and yield of okra (Abelmoschus Esculentus L.), Internat. J. Advanced Acad. Res. 3(1) (2017)1-7.

[29] S. M. Kanneh, et al., Response of different NPK fertilizer rates on the growth and yield of two local varieties of pepper (Capsicum annuum L.) in Ogoo Farm, Western Area, Sierra Leone, ARPN J. Agric. Biol. Sci., 12(4) (2017) 123-127.

[30] M. Kumar, et al., Effect of nitrogen, phosphorus and potassium fertilizers on the growth, yield and quality of tomato var. Azad T-6, Asian J. Hort. 8(2) (2013) 616-619.

[31] A. Imran, A. Wahiha, A. K. Zaheer, Effect of different levels of NPK fertilizer on the growth and yield of greenhouse cucumber (Cucumis sativus) by using drip irrigation technology, J. Res. 1(8) (2014) 650-660.

[32] G. O. Nkansah, J. C. Norman, A. Martey, Growth, Yield and Consumer Acceptance of Sweet Pepper (Capsicum annuum L.) as Influenced by Open Field and Greenhouse Production Systems, J. Hort. 4(4) (2017) 1-8.

DOI: https://doi.org/10.4172/2376-0354.1000216

[33] F. M. Oloyede, G. O. Agbaje, I. O. Obisesan, Effect of NPK fertilizer on fruit yield and yield components of pumpkin (Cucurbita pepo Linn.), African J. Food Agric. Nutri. Dev. 13(3) (2013) 7755-7771.

DOI: https://doi.org/10.5897/ajar12013.6794

[34] F. He, et al., Effects of root cooling on plant growth and fruit quality of cocktail tomato during two consecutive seasons, J. Food Qual. 2019: 1-15.

DOI: https://doi.org/10.1155/2019/3598172

[35] A. N. M. De Koning, The effects of different day/night temperature regimes on growth, development and yield of greenhouse tomatoes, J. Hortic. Sci. 63 (1988) 465-471.

DOI: https://doi.org/10.1080/14620316.1988.11515880

[36] V. K. Sawhney, P. L. Polowick, Fruit development in tomato: the role of temperature. Can. J. Bot. 63(6) (1985) 1031-1034.

DOI: https://doi.org/10.1139/b85-140

[37] A. P. Papadopoulos, X. Hao, Effects of day and night temperature in early season on growth, productivity and energy use of spring tomato, Can. J. Plant. Sci. 81 (2001) 303-311.

DOI: https://doi.org/10.4141/p00-064

[38] E. M. Khah, H. C. Passam, Flowering, fruit set and development of the fruit and seed of sweet pepper (Capsicum annuum L.) cultivated under conditions of high ambient temperature, J. Hort. Sci. 67 (1992) 251-258.

DOI: https://doi.org/10.1080/00221589.1992.11516245

[39] F. W. Went, Plant growth under controlled conditions. II. Thermoperiodicity in growth and fruiting of the tomato, Amer. J. Bot. 31 (1944) 135-150.

DOI: https://doi.org/10.1002/j.1537-2197.1944.tb08011.x

[40] M. Ahumada, M. Cantwell, Post-harvest studies on pepino dulce (Solanum muricatum Ait.): maturity at harvest and storage behavior, Post-harvest Bio. Tech. 7 (1996) 129-136.

DOI: https://doi.org/10.1016/0925-5214(95)00028-3

[41] A. Cavusoglu, I. E. Erkel, M. Sulusoglu, The effects of climatic factors at different growth periods on pepino (Solanum muricatum Aiton): A model for the enhancement of underutilized exotic fruits, Food Res. Internat. 44 (2009) 1927-1935.

[42] A. Rodriguez-Burruezo, J. Prohens, A. M. Fita, Breeding strategies for improving the performance and fruit quality of the pepino (Solanum muricatum): A model for the enhancement of underutilized exotic fruits, Food Res. Int. 44 (2011) 1927–(1935).

DOI: https://doi.org/10.1016/j.foodres.2010.12.028

[43] M. Gonzales, et al., Colour and composition of improved pepino cultivars at three ripe stages. Gartenbauwissenschaft, 65 (2000) 83-87.

[44] L. Martinetti, F. Paganini, Effect of organic and mineral fertilization on yield and quality of zucchini, Acta Hort. 700 (2006) 125-128.

DOI: https://doi.org/10.17660/actahortic.2006.700.18

[45] E. Sanchez, et al., Changes in biomass, enzymatic activity and protein concentration in roots and leaves of green bean plants (Phaseolus vulgaris L. cv. Strike) under high NH4NO3 application rates, Scientia Hort. 99 (2004) 237–248.

DOI: https://doi.org/10.1016/s0304-4238(03)00114-6

[46] S. O. Omosoto, O. S. Shittu, Effect of NPK fertilizer rate and method of application on growth and yield of okra (Abelmoschus esculentus (L.) Moench) at Ado-Ekiti South western Nigeria, Internat. J. Agric. Res. 2 (2007) 614-619.

DOI: https://doi.org/10.3923/ijar.2007.614.619

[47] J. Prohens, J. J. Ruiz, F. Nuez, Growing cycles for a new crop, the pepino, in the Spanish Mediterranean, Acta Hort. 523 (2000) 53-60.

DOI: https://doi.org/10.17660/actahortic.2000.523.6

[48] I. C. Karapanos, S. Mahmood, C. Thanopoulos, Fruit set in solanaceous vegetable crops as affected by floral and environmental factors, The European J. Sci. Biotechn. 2(1) (2008) 88-105.

[49] M. M. Peet, D. H. Willits, R. Gardner, Response of ovule development and post-pollen production processes in male- sterile tomatoes to chronic, sub-acute high temperature stress, J. Exp. Bot. 48 (1997) 101-112.

DOI: https://doi.org/10.1093/jxb/48.1.101

[50] R. K. Raja, V. G. Kakani, Screening capsicum species of different origins for high temperature tolerance in vitro pollen germination and pollen tube length, Scientia Hort. 112 (2007) 130-135.

DOI: https://doi.org/10.1016/j.scienta.2006.12.014

[51] E. Pressman, R. Shaked, N. Firon, Tomato (Lycopersicon esculentum L.) response to heat stress: focus on pollen grains, Plant Stress, 1 (2007) 216-227.

[52] K. Suzuki, et al., Ultrastructural study on degeneration of tapetum in anther of snap bean (Phaseolus vulgaris L.) cultivar, J. Jpn. Soc. Hortic. Sci. 81 (2001) 251-256.

[53] A. N. Erickson, A. H. Markhart, Flower development and organ sensitivity of bell pepper (Capsicum annum L) to elevated temperature, Plant Cell Environ. 25 (2002) 123-130.

DOI: https://doi.org/10.1046/j.0016-8025.2001.00807.x

[54] M. Dinar, J. Rudich, Effect of heat stress on assimilate partitioning in tomato, Annals Bot. 56 (1985) 239-248.

DOI: https://doi.org/10.1093/oxfordjournals.aob.a087008

[55] B. Aloni, T. Pashkar, L. Karni, Partitioning of [14]-C sucrose and acid invertase activity in reproductive organs of pepper plants in relation to their abscission under heat stress, Annals Bot. 67 (1991)371-377.

DOI: https://doi.org/10.1093/oxfordjournals.aob.a088152

[56] B. Aloni, et al., The susceptibility of pepper (Capsicum annum) to heat induced flower abscission: possible involvement of ethylene, J. Hort. Sc. 69 (1994) 923-928.

DOI: https://doi.org/10.1080/14620316.1994.11516528

[57] Y. Kanayama, A. Kochetov, Abiotic stress biology in horticultural plants, Springer, New York, (2015).

[58] S. Sato, M. M. Peet, J. F. Thomas, Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic, mild heat stress, Plant Cell Environ. 23 (2000)719-726.

DOI: https://doi.org/10.1046/j.1365-3040.2000.00589.x

[59] S. Iwahori, High temperature injuries in tomato. IV. Development of normal flower buds and morphological abnormalities of flower buds treated with high temperature, J. Jpn. Soc. Hortic. Sci. 34 (1965) 33-41.

[60] R. Lozano et al., Tomato flower abnormalities induced by low temperatures are associated with changes of expression of MADS-Box genes, Plant Physiol. 117 (1998) 91-100.

DOI: https://doi.org/10.1104/pp.117.1.91
Show More Hide
Cited By:
This article has no citations.