Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

JHPR > JHPR Volume 10 > Leakage Compositional Changes Accompanying...
< Back to Volume

Leakage Compositional Changes Accompanying Exposure some Mango Cultivars to Low Temperature under Vitro Conditions

Full Text PDF

Abstract:

Under in vivo conditions (ambient-air temperature), the relationship between low temperature stress and the response of some different mango cultivars was monitored.Some biochemical events that occur following cold exposure of mango trees leaves were detected to evaluate their ability to acquire cold injury during exposure to low temperature. The cultivars of Alphonso, Baladi, Bullock's Heart, Helmand, Hindi Besennara, Mabrouka, Mestekawy, Nabeeh, Oweisi, Spates, Taimour and Zebdawhich grown in private orchard in Fayoum Governorate, Egypt were selected to verify this aim. This study was carried out during the period from November to March of during years; 2012 and 2013. The following results were stated: the detected leaf compositional changes were significantly differed among the tested cultivars and sampling times. In this respect, electrolytes (%), Na+, K+, inorganic phosphate (Pi), Ca2+, total soluble sugars (TSS) and total free amino acids (TFAA) concentrations were detected in leachate of fresh leaves and showed significant differences in response to the cultivars and sampling times. However, in this study, Alphonso, Bullock's Heart, Helmand, Taimour and Zebda cultivars of mango had the best result in their cold tolerance under the conditions of this study, which is not exactly in consistent with what the researcher found.

Info:

Periodical:
Journal of Horticulture and Plant Research (Volume 10)
Pages:
46-62
Citation:
A. A.S. Sayed et al., "Leakage Compositional Changes Accompanying Exposure some Mango Cultivars to Low Temperature under Vitro Conditions", Journal of Horticulture and Plant Research, Vol. 10, pp. 46-62, 2020
Online since:
July 2020
Export:
Distribution:
References:

[1] Allen, D. J. and Ort, D. R. (2001). Impacts of chilling temperatures on photosynthesis in warm climate plants. Trends in Plant Science, 6:36-42.

DOI: https://doi.org/10.1016/s1360-1385(00)01808-2

[2] Alonso. G .and Blaikie. S. J. (2003). Seasonal variation of carbon assimilation in mango (cv. Kensington Pride): effect of flowering treatments. Australian Journal of Agriculture Research, 54: 309-321.

DOI: https://doi.org/10.1071/ar02139

[3] Boyer, J. S. (1982).Plant productivity and environment. Science, 218:443-448.

[4] Bravo, L. A., Ulloa, N., Zuniga, G. E., Casanova, A., Corcuera, L. J. and Alberdi, M. (2001). Cold resistance in Antarctic angiosperms. Plant Physiol., 111:55-65.

DOI: https://doi.org/10.1034/j.1399-3054.2001.1110108.x

[5] Chinnusamy, V., Zhu, J. and Zhu, J-K (2007). Cold stress regulation of gene expression in plants. Trends in Plant Science, 10(12):244-251.

DOI: https://doi.org/10.1016/j.tplants.2007.07.002

[6] Davey, M.P.; Woodward, F.I. and Quick, W.P. (2009). Intraspecific variation in cold-temperature metabolic phenotypes of Arabidopsis lyratassp.Petraea. Metabolomics, 5: 138-149.

DOI: https://doi.org/10.1007/s11306-008-0127-1

[7] Diehl, H.; Goetz, C.A. and Hach, C.C. (1950). The versenate titration for total hardness. Amer. Water Works Assoc. J., 42: 40-48.

DOI: https://doi.org/10.1002/j.1551-8833.1950.tb18799.x

[8] Dubois, M., Gilles, K., Hamilton, J., Rebers, P. and smith, F. (1956). Colormetric method for determination of sugars and related substances. Analytical chemistry, 28(3):350-356.

DOI: https://doi.org/10.1021/ac60111a017

[9] Farooq, S. and Azam, F. (2002).The Co-existence of salt and drought tolerance in Triticaceae. Hereditas, 135:205-210.

DOI: https://doi.org/10.1111/j.1601-5223.2001.00205.x

[10] Ghassemi-Golezani, K.; Khomari, S.; Valizadeh, M. and Alyari, H. (2008). Changes in chlorophyll content and fluorescence of leaves of winter rapeseed affected by seedling vigor and cold acclimation duration. J. Food Agric. Environ., 6: 196-199.

DOI: https://doi.org/10.15258/sst.2008.36.3.26

[11] Ghosh, B.; Adhikary, J. and Banerjee, N.C. (1981).Changes of some metabolites in rice seeds during ageing. Seed Sci.&Technol., 9(2): 469-473.

[12] Hanson, J. B. (1984). The function of calcium in plant nutrition. In: advances in plant nutrition. Vol.1, (Tinker, P. B. and Lauchi, A., Eds.). Praeger, New York, NY, USA, PP. 149-208.

[13] Hughes, M. A. and Dunn, M. A. (1996). The molecular biology of plant acclimation to low temperature. J. Exp. Bot., 47:291-305.

[14] Huner, N. P. A., Ӧquist, G., Hurry, V. M., Krol, M., Falk, S. and Griffith, M. (1993). Photosynthesis, Photoinhibition and low temperature acclimationin cold tolerant plants. Photosynth Res., 37:19-39.

DOI: https://doi.org/10.1007/bf02185436

[15] Ismail, O.M. (2014). Use of electrical conductivity as a tool for determining damage index of some mango cultivars. Inter. J. Plant & Soil Sci., 3(5): 448-456.

DOI: https://doi.org/10.9734/ijpss/2014/8200

[16] Jackson, M. L. (1967).Soil Chemical Analysis,. New Delhi, Prentice Hall of India private Limited, New Delhi, India, pp.144-179.

[17] Jayarman, J. (1981). Laboratory Manual in Biochemistry. Wiley Eastern Ltd., New York, NY, USA, pp.61-73.

[18] Kasamo, K.; Yamaguchi, M. and Nakamura, Y. (2000). Mechanism of the chilling-induced decrease in proton pumping across the tonoplast of rice cells. Plant and Cell Physiol., 41(7): 840-849.

DOI: https://doi.org/10.1093/pcp/pcd002

[19] Kasuga, J.; Arakawa, K. and Fujikawa, S. (2007). High accumulation of soluble sugars in deep supercooling Japanese white birch xylem parenchyma cells. New Phytol., 174: 569-579.

DOI: https://doi.org/10.1111/j.1469-8137.2007.02025.x

[20] Kaur, G.; Kumar, S.; Thakur, P.; Malik, J.A.; Bhandhari, K.; Sharma, K.D. and Nayyar, H. (2011). Involvement of proline in response of chickpea (CicerarietinumL.) to chilling stress at reproductive stage. Sci. Hortic., 128: 174-181.

DOI: https://doi.org/10.1016/j.scienta.2011.01.037

[21] Leborgne, N., Teulieres, C., Travert, S., Rols, M. P., Teissie. J. and Boudet, A. M. (1995). Introduction of specific carbohydrates into Eucalyptusgunniicells increases their freezing tolerance. Eur. J. Biochem., 229:710-717.

DOI: https://doi.org/10.1111/j.1432-1033.1995.0710j.x

[22] Lennartsson, M. and Ögren, E. (2004): Clonal variation in temperature requirements for budburst and dehardening in Salix species used for biomass production. Scand. J. For. Res., 19:295-302.

DOI: https://doi.org/10.1080/02827580410030145

[23] Lukatkin, A. S., Brazaitytė, A., Bobinas, C. Duchovskis, P. (2012). Chilling injury in chilling-sensitive plants: a review, Žemdirbystė-Agriculture, 99(2):111-124.

[24] Lutts, S., Kiner, J. M. and Bouharmont, J. (1996). NaCl induced senescence in leaves of rice cultivars differing in salinity resistance. Ann. Bot., 78:389-398.

DOI: https://doi.org/10.1006/anbo.1996.0134

[25] Mckay, H. (1992). Electrolyte leakage from fine roots of conifer seedlings: A rapid index of plant vitality following cold storage. Can. J. For. Res., 22:1371-1377.

DOI: https://doi.org/10.1139/x92-182

[26] Minorsky, P.V. (2003). Raffinose oligosaccharides. Plant Physiol., 131:1159-1160.

[27] Mitra, S. K. and Baldwin, E. A. (1997). Mango. In: Mitra, S.K. (Ed), Postharvest Physiology and Storage of Tropical and Subtropical Fruits. CAB International. New York, NY. 85-122.

[28] Monroy, A. F., and Dhindsa, R. S. (1995). Low-temperature signal transduction: induction of cold acclimation specific genes of alfalfa by calcium at 25°C. Plant Cell, 7(3):321-331.

DOI: https://doi.org/10.2307/3869854

[29] Page, A. I., Miller, R. H. and Keeny, D. R. (1982). Methods of Soil Analysis. Part II. Chemical and Microbiological Methods. 2nd Ed., American Society of Agronomy, Madison, WI, USA.pp.225-246.

[30] Palta, J.P. (1996). Role of calcium in plant responses to stresses: Linking basic research to the solution of practical problems. J. Hort. Sci., 31(1): 51-57.

DOI: https://doi.org/10.21273/hortsci.31.1.51

[31] Palta, J.P.; Levitt, J. and Stadelmann, E.J. (1977). Freezing injury in onion bulb cells. Plant Physiol., 60: 393-397.

DOI: https://doi.org/10.1104/pp.60.3.398

[32] Pellett, H.; Gearhart, M. and Dirr, M. (1981). Cold hardiness capability of woody ornamental plant taxa. J. Ame. Soc. Hort. Sci., 106: 239-243.

[33] Percival, G.C.; Boyle, C. and Baired, L. (1999).The influence of calcium supplementation on the freezing tolerance of woody plants. J. Arboric., 25(6): 285-291.

[34] Piotrowska, G. and Kacperska, A. (1987). Relationship between ATP content desiccation-induced injuries in winter rape hypocotyls. J. Plant Physiol., 128:485-490.

DOI: https://doi.org/10.1016/s0176-1617(87)80135-9

[35] Polisensky, D.H. and Braam, J. (1996). Cold shock regulation of the Arabidopsis TCH genes and the effects of modulating intracellular calcium levels. Plant Physiol., 111: 1271-1279.

DOI: https://doi.org/10.1104/pp.111.4.1271

[36] Rapaczb, M. (2002). Cold-deacclimation of oilseed rape (Brassica napus var. oleifera) in response to fluctuating temperatures and photoperiod. Ann. Bot. London, 89: 543-549.

DOI: https://doi.org/10.1093/aob/mcf090

[37] Rife, C.L. and Zeinali, H. (2003). Cold tolerance in oilseed rape over varying acclimation durations. Crop Sci., 43: 96-100.

DOI: https://doi.org/10.2135/cropsci2003.0096

[38] Ruelland, E and Zachowski, A. (2010). How plants sense temperature. Environ Exp. Bot., 69:225-232.

[39] Sauter, J. J., Wisniewski, M. and Witt, W. (1996). Interrelationships between ultrastructure, sugar levels, and frost hardiness of ray parenchyma cells during frost acclimation and deacclimation in poplar (Populus x canadensisMoench ‹robusta›) wood. J. Plant Physiol., 149:451-461.

DOI: https://doi.org/10.1016/s0176-1617(96)80148-9

[40] Schaffer, B., Whiley. A. W. and Grane, J. H.(1994). Mango.In- Handbook of Environmental Physiology of Fruit Crops.Volume 2.Sub-Tropical and Tropical Crops.(Schaffer, B. and Anderson P. C. Eds.). CRC Press Inc., Boca Raton, FL. USA. 165-197.

DOI: https://doi.org/10.1017/s0376892900034329

[41] Siminovitch, D. (1981). Common and disparate elements in the processes of adaptation of herbaceous and woody plants to freezing: a perspective. Cryobiology, 18: 166-185.

DOI: https://doi.org/10.1016/0011-2240(81)90088-2

[42] Singer, S.M.; El-Tohamy, W.A.; Hadid, A.F.A.; Mokhart, A.H. and Li, P.H. (1996). Chilling and water stress injury in bean (Phaseolus vulgaris L.) seedlings reduced by pretreatment with CaCl2, mefluidide, KCl and MgCl2. Egyp. J. Hort. Res., 23: 77-87.

[43] Snedecor, G.W. and Cochran, W.G. (1980). Statistical Methods.7th Ed., Iowa state press, Ames, IA, USA.pp.401-403.

[44] Strand, A.; Foyer, C.H.; Gustafsson, P.; Gardestrom, P. and Hurry, V. (2003). Altering flux through the sucrose biosynthesis pathway in transgenic Arabidopsis thaliana modifies photosynthetic acclimation at low temperatures and the development of freezing tolerance. Plant Cell Environ., 26: 523-535.

DOI: https://doi.org/10.1046/j.1365-3040.2003.00983.x

[45] Suwapanich, R. and Haesungcharoen, M. (2006). Application of thermal properties to predict chilling injury of mango fruits. J. Agric.&Soc. Sci., 4(2): 225-226.

[46] Taiz, L. and Zeiger.E.(1998). Plant Physiology.2nd Ed., Sinauer Associates Inc., Publishers, Sunderland, Massachusetts, USA.pp.735-736.

[47] Terzaghi, W.B.; Fork, D.C.; Berry, J.A. and Field, C.B. (1989). Low and high temperature limits to PSII.A survey using transparinaric acid, delayed light emission and F0 chlorophyll fluorescence. Plant Physiol., 91(4): 1494-1500.

DOI: https://doi.org/10.1104/pp.91.4.1494

[48] Usadel, B.; Blasing, O.E.; Gibon, Y.; Retzlaff, K.; Hoehne, M.; Gunther, M. and Stitt, M. (2008). Multi-level genomic analysis of the response of transcripts, enzyme activities and metabolites in Arabidopsis rosettes to a progressive decrease of temperature in the non-freezing range. Plant Cell and Environ., 31: 518-547.

DOI: https://doi.org/10.1111/j.1365-3040.2007.01763.x

[49] Xin, Z. and Browse, J. (1998). Eskimo1 mutants of Arabisopsisare constitutively freezing-tolerant. Proc. Nat1 Acad. Sci.,USA,95: 7799-7804.

DOI: https://doi.org/10.1073/pnas.95.13.7799

[50] Zia, M.S.; Salim, M.; Aslam, M.; Gill, M.A. and Rahmatullah (1994). Effect of low temperature of irrigation water on rice growth and nutrient uptake. J. Agric. Sci., 173(1): 22-31.

DOI: https://doi.org/10.1111/j.1439-037x.1994.tb00570.x
Show More Hide
Cited By:
This article has no citations.