This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] FAOSTAT, FAO Statistics Division 2013, (2013). [Online]: http://fao.org.
[2] C.R. Chen et al., Supercritical-carbon dioxide extraction and deacidification of rice bran oil, J. Sup. Flu. 45 (2008) 322-331.
[3] K.A. Moldenhauer et al., Functional foods, Technomic Publishing Co. Inc. Lancanster, Basel, Switzerland, (2003).
[4] C. Saenjum et al., Antioxidant and anti-inflammatory activities of gamma-oryzanol rich extracts from Thai purple rice bran, J. Med. Plan. Res. 6 (2012) 1070-1077.
[5] N.G. Baydar, G. Ozkanb, S. Yasar, Evaluation of the antiradical and antioxidant potential of grape extracts, Food Control. 18 (2007) 1131-1136.
[6] A. Matkowki, Plant in vitro culture for the production of antioxidant-a review, Biotech. Adv. 26 (2008) 548-560.
[7] F.A. Einhelling, Interactions involving allelopathy in cropping systems, Agr. J. 88 (1996) 886–893.
[8] D.S. Seigler, Chemistry and mechanisms of allelopathic interactions, Agr. J. 88 (1996) 876–885.
[9] F.E. Dayan, J.G. Romagni, S.O. Duke, Investigating the mode of action of natural phytotoxins, J. Chem. Eco. 26 (2000) 2079-(2094).
[10] Inderjit, J. Weiner, Plant allelochemical interference or soil chemical ecology?, Per. Plant Eco. Evo. Sys. 4 (2001) 3–12.
[11] J. Mizutani, Selected allelochemicals, Cri. Re. Plant Sci. 18 (1999) 653–671.
[12] J.R. Vyvyan, Allelochemicals for new herbicides and agrochemicals, Tetrahedron. 58 (2002) 1631-1646.
[13] F.A. Macias et al., Bioactive steroids from Oryza sativa L. Steroids. 71 (2006) 603–608.
[14] V. Rowshan, F. Farhadi, S. Najafian, The essential oil of Dodonaea viscosa leaves is allelopathic to rosemary (Rosmarinus officinalis L.), Ind. Crops Pro. 56 (2014) 241-245.
[15] M. Scognamiglio et al , Allelopathic potential of alkylphenols from Dactylis glomerata subsp. hispanica (Roth) Nyman, Phyto. Let. 5 (2012) 206–210.
[16] L.R. Scrivanti, Allelopathic potential of Bothriochloa laguroides var. laguroides (DC) Herter (Poaceae: Andropogoneae), Flora. 205 (2010). 302–305.
[17] T.L. Weir, S.W. Park, J.M. Vivanco, Biochemical and physiological mechanisms mediated by allelochemicals, Cur. O. Plant Bio. 7 (2004). 472-479.
[18] H.J. Bouwmeester et al., Secondary metabolites signalling in host–parasitic plant interactions, Cur. O. Plant Bio. 6 (2003) 358–364.
[19] A. Fiorentino et al., Potential allelopathic effects of stilbenoids and flavonoids from leaves of Carex distachya Desf, Bio. Sys. Eco. 36 (2008) 691–698.
[20] V.A. Areco et al, Effect of pinene isomers on germination and growth ofmaize, Bio. Sys. Eco. 55 (2014) 27–33.
[21] T.D. Xuan et al., Biological control of weeds and plant pathogens in paddy rice by exploiting plant allelopathy: an overview, Crop Prot. 24 (2005) 197-206.
[22] S. Yodmanee, T.T. Karrila, P. Pakdeechanuan, Physical, chemical and antioxidant properties of pigmented rice grown in Southern Thailand, Int. Food Res. J. 18 (2011) 901-906.
[23] A.A. Elzaawely, T.D. Xuan, S. Tawata, Antioxidant and antibacteria activity of Rumex japonicas Houtt, Biol. Pharm. Bull. 28 (2005) 2225-2230.
[24] R. Touati et al., The potential of cork from Quercus suber L grown in Algeria as a source of bioactive lipophilic and phenolic compounds, Ind. Crops Prod. 76 (2015) 936-945.
[25] N. Dolai et al, Free radical scavenging activity of Castanopsis indica in mediating hepatoprotective activity of leaves activity of carbon tetrachloride intoxicated rats, Asian Pac. J. Trop. Biomed. 5 (2012) 242-251.
[26] C.B. Silva et al, Allelopathic and antioxidant activity and total phenolic contents of Hydrocotyle bonariensis Lam. (Araliaceae), Acta Scientiarum Tech. 32 (2010) 413–420.
[27] A. Basile et al, Antibacterial and allelophathic activity of extract from Castanea sati leaves, Fitoterapia. 71 (2000) S1–S140.
[28] H.A. Kordan, Seed viability and germination: a multi-purpose experimental system, J. Biol. Educ. 26 (1992) 247-251.
[29] U. S. Environmental Protection Agency, Nanotechnology White Paper External Review Draft, (2005), [Online]: http://www.epa.gov/osa/pdfs/EPA_nanotechnology_white_paper_external review draft_12-02-2005.pdf.
[30] O. Munzuroglu, H. Geckil, Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus, Arch. Environ. Contam. Toxicol. 43 (2002) 203-213.
[31] X.D. Wang et al., Validation of germination rate and root elongation as indicator to assess phytotoxicity with Cucumis sativus, Chemosphere. 44 (2001) 1711-1721.
[32] P. Saravanan et al., GC-MS analysis of phytochemical constituent in ethanolic bark extract of Ficus religiosa Linn., Int. J. Phar. Phar. Sci. 6 (2014) 457-460.
[33] K. Lewis, F.M. Ausubel, Prospects for plant-derived antibacterial, Nat Biotech. 24 (2006) 1504-1507.
[34] A.S. Adekunle, Preliminary assessment of antimicrobial properties of aqueous extract of plants against infectious diseases, Biol Med. 1 (2009) 20-24.
[35] J.A. Olagunju et al., Effects of an ethanolic root extract of Plumbago zeylanica L on some serum parameters of the rats, RPMP-Drug Dev Mol. 11 (2006) 268-276.
[36] P.P. Kumar, S. Kumaravel, C. Lalitha, Screening of antioxidant activity, total phenolics and GC-MS study of Vitex negundo, Afr. J. Biochem. 4 (2010) 191-195.
[37] S. Jana, G.S. Shekhawat, Phytochemical analysis and antibacterial screening of in vivo and in vitro extracts of Indian medicinal herb: Anethum graveolens, Res. J. Med. Plant. 4 (2010) 206-212.