This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] M. Jamil, E.S. Rha, The effect of Salinity (NaCl) on the germination and seedling of sugar beet (Beta vulgari L.) and cabbage (Brassica oleraceae L.), Korean J. Plant Res. 7 (2006) 226-232.
[2] L.Y. Lira, S. Li, M. Showalter, Immunolocalization of extensin and potato tuber lectin in carrot, tomato and potato, Physiogia Plantarum. 97(4) (1996) 708-718.
[3] R. Munns, Comparative physiology of salt and water stress, Plant Cell Environ. 25 (2002) 239-250.
[4] J.K. Zhu, Plant salt tolerance. Trends in Plant Science. 6 (2001) 66-71.
[5] W. Sairam, S.A. Tygyi, Effects of soil salinity on germination and crop yield, Journal of Environmental Science. (2004) 43-49.
[6] A. Dudly, Growth and yield of vegetable, Crop Science. 21 (1992) 891-900.
[7] D. Prat, R.A. Fathi- Ettai, Variation in organic and mineral component in young Eukalyptus seedling under saline stress, Physiologia Plantarum. 79(3) (2013) 479-498.
[8] T.L. Shininger, The control of vascular development, Annual Review of Plant Physiology. 30 (1997) 313-337.
[9] H.J. Bohnert, D.E. Nelson, R.G. Jensen, Adaption of environmental stresses, Plant and Cell. 7 (1995) 1099-1111.
[10] H.J. Bohnert, R.G. Jensen, Strategies for engineering water stress tolerance in plants, Trend in Biotechnology. 14 (1996) 89-97.
[11] B. Brevitz, Organic solute content, R.C. Staples (Ed.), New York, (2004).
[12] A. Arthur, A Passion for Tomatoes, Smithsonian. 39(5) (2008) 54-62.
[13] T. Wada et al., Effect of foliar application of calcium solutions on the incidence of blossom-end rot of tomato fruit, Journal of the Japanese Society for Horticultural Science 65 (1996) 553–558.
[14] P. Carillo et al., Nitrogen metabolism in durum wheat under salinity: accumulation of proline and glycine betaine, Functional Plant Biology. 35 (2008) 412–426.
[15] IPGRI. Laboratory Bench activity glossary. How to calculate Leaf Surface area, 2014, pp.27-29.
[16] W. Jones, J. Gorham, E. MacDonnell, Organic and inorganic solutre content as selection crereria for salt tolerance in Triteceae, in: Salinity tolerance in plants, R.C. Staples, H. Gary, H. Toenniessen (Eds.), Wiley, New York, 1984, pp.189-203.
[17] F.T. Blum, Interpreting the metabolic responses of plants to water stress, Hort. Science. 15 (1996) 6223-629.
[18] F. Amini et al., Protern pattern changes in tomato under In vitro salt stress, Russian Journal of Plant Physiology. 54 (2007) 464-471.
[19] A.M. Gummi, A.A. Aliero, A study on cytotoxic ions sequestration and sodium/potassium levels as salt tolerant indicators in tomato, Journal of Biological Sciences. 4 (2012) 47-53.
[1] G. Surabhi, A. Rout, Protective Chemical Agents in the Amelioration of Plant Abiotic Stress, p. 24, 2020
DOI: https://doi.org/10.1002/9781119552154.ch2[2] S. Ali, Z. Abbas, M. Seleiman, M. Rizwan, İ. YAVAŞ, B. Alhammad, A. Shami, M. Hasanuzzaman, D. Kalderis, "Glycine Betaine Accumulation, Significance and Interests for Heavy Metal Tolerance in Plants", Plants, Vol. 9, p. 896, 2020
DOI: https://doi.org/10.3390/plants9070896[3] C. Hernández-Pérez, F. Gómez-Merino, J. Spinoso-Castillo, J. Bello-Bello, "In Vitro Screening of Sugarcane Cultivars (Saccharum spp. Hybrids) for Tolerance to Polyethylene Glycol-Induced Water Stress", Agronomy, Vol. 11, p. 598, 2021
DOI: https://doi.org/10.3390/agronomy11030598[4] M. Ayub, M. Rehman, W. Umar, Z. Farooqi, M. Sarfraz, H. Ahmad, Z. Ahmad, M. Aslam, Emerging Plant Growth Regulators in Agriculture, p. 335, 2022
DOI: https://doi.org/10.1016/B978-0-323-91005-7.00005-9