Promoting Knowledge Management Components in the Palestinian Higher Education Institutions - A Comparative Study

Samy S. Abu Naser¹,a *, Mazen J. Al Shobaki²,b, Youssef M. Abu Amuna³,c
¹,²,³Faculty of Engineering & Information Technology, Al-Azhar University, Gaza, Palestine
¹abunaser@alazhar.edu.ps, ²mazen.alshobaki@gmail.com, ³yabuamuna@gmail.com

Keywords: Knowledge Management, Knowledge Management Maturity, High performance, Higher Education Institutions, Asian Productivity Model.

Abstract. This paper aims to measure knowledge management maturity in higher education institutions to determine the impact of knowledge management on high performance. Also the study aims to compare knowledge management maturity between universities and intermediate colleges. This study was applied on five higher education institutions in Gaza strip, Palestine. Asian productivity organization model was applied to measure Knowledge Management Maturity. Second dimension which assess high performance was developed by the authors. The controlled sample was (917). Several statistical tools were used for data analysis and hypotheses testing, including reliability correlation using Cronbach’s alpha, “ANOVA”, Simple Linear Regression and Step Wise Regression. The overall findings of the current study show that maturity level is in the second level. Findings also support the main hypothesis and its sub- hypotheses. The most important factors effecting high performance are: Processes, knowledge management leadership, People, knowledge management Outcomes. Furthermore, the current study is unique by the virtue of its nature, scope and way of implied investigation, as it is the first comparative study between universities and intermediate colleges in Gaza Strip that explores the status of knowledge management maturity using the Asian Productivity Model.

1. Introduction:

Knowledge Management(KM) in Higher Education Institutions(HEI) is the main aim of those organizations, where they produce and manage knowledge through human activities and technical practices to link individuals from various administrative levels and sections.

This process establishing working groups and trust relationships which produce share and exchange of knowledge they own, support individual and collective learning processes, and then improve and develop individual and organizational performance.

Measuring Knowledge Management Maturity(KMM) is an important process and the purpose of the measurement should be obvious and within right criteria based on successful experiences with the capability to recognize knowledge gaps that must be remedied in order to take full advantage of the knowledge [26, 41].

The objective of this study is to measure and compare KMM in HEI in universities and intermediate colleges. Also the study aims to define KMM level to encourage them moving to a higher level.

In view of the literature review, the study raises the question of:
Q1. What are the most influential factors on HEI performance resulting from KMM?
Q2. How to link KMM with performance and benefit from it for future performance improvements?
Q3. How far intermediate colleges differ from universities using APO model?

As for originality, the current study is unique by the virtue of its nature, scope and way of implied investigation, as it is explore the status of KMM using the Asian productivity model and compare between different types of HEI.
2. Literature review:

2.1 Knowledge management in HEI

The overall findings of these studies [58,59] suggested that KMM is suitable for measuring performance excellence. KMM assessment showed that Al-Azhar and Al-Quds Open Universities maturity level was three. It was found that the most important factors effecting performance excellence were: Processes, KM leadership, People, KM Outcomes [58,59].

The overall findings of this study [59] suggested that KMM is suitable for measuring high performance in Al-Quds Open University. KMM assessment shows that maturity level of Al-Quds Open University is in level three. The most important factors effecting high performance are: KM Outcomes and Learning and Innovation [59].

HEI are cognitive intensity institutions where the primary function is based on knowledge, production of knowledge, documentation and publishing. There is a growing belief that knowledge management in educational institutions help build the future of a dynamic learning environment, development and improvement of the efficiency activities of knowledge sharing and improve the overall performance of the organization [1, 2, 24, 57 and 49].

Ramachandran et al. defined KM in HEI as "Systematic attempt to develop and implement knowledge practices in universities with the support of major strategic assistance factors "[40]. Also defined by Petrides and Nodine as A frame or a way for individuals working in the educational institution to develop a set of practices to gather information and share what they know, which resulting in behaviors or actions that will improve the level of services and products offered by the educational institution"[34].

Laal defined it as “the process of converting information and intellectual assets to a continuing value that connect individuals with the knowledge they need to take action when they need it” [25].

According to previous definitions, KM in HEI is similar to knowledge management in industrial organizations or services, in terms of operations and activities, with a focus on the link between individuals and management to enhance the quality of outputs and achieve a competitive advantage in performance and outputs. HEI offer their services primarily to the community, and represents members of the community the main beneficiaries of Universities. Researchers identified the most reasons why HEI environment is the most suitable to adopt KM: The existence of technology infrastructure, confidence and knowledge sharing is normal in universities and students enroll in a college to access knowledge [1, 12, 14, 22, 28, 57, 44].

2.2 Critical factors for KM in HEI:

The most critical variables that has an effect on sharing knowledge in universities are benefits and rewards [48,57]. Hislop suggests that the issues that concern the staff regarding to assessment of advantages and disadvantages of sharing knowledge [16]. Benefits can be real rewards which improve the organization's performance and stability. Rahman et al. and Bock et al. pointed that social sharing benefits cannot be estimated quantitatively, instead it is a personal commitment, trust and gratitude [7, 39].

Leadership style is an additional important factor which play an essential role in endorsement and development of knowledge exchange behavior, by contributing in experiential learning for staff, providing opportunities for supervising operations, development information technology systems, rewards and opportunities and interaction systems [41, 42, 43, 48, 53].

The role of the leader can be completely different in the educational institutions where there are two types of leadership: academic and hierarchical management leadership. Significant tensions can exist when people with administrative capacity control the academic environment [11].

There is an immense dispute about the role of culture in educational institutions in the field of knowledge management and exchange [10, 26, 30, 41, 43, and 48]. (Lee) pointed that academic departments are complex and cultures may be different among departments in different disciplines [10]. The fact that remains dominant here is that the academic community have a culture of participation more than other forms of organizations and that cooperation is the essence of knowledge management [37, 57].
One more important factor is organizational structure [10, 26, and 41]. This structure might be a major difficulty for the exchange of knowledge. For that reason, organizational structure should be flexibly designed to persuade participation and cross-border cooperation inside the organization. The combination between formal organizational structure and non-hierarchical structure enhance knowledge generating and sharing [9, 41, 48, 56].

2.3 High performance in HEI:

HEI are service organizations providing education and knowledge. They are also responsible for providing the society with qualified people for jobs, so they deliberately achieve high performance in their activities by teaching process. This performance measured by many excellence models such as BSC, Malcolm Baldrige American model, European model and Canadian model [3]. Those models depend on several criteria, leadership, strategic planning, customer orientation, KM, human resource, operations Management and the outcomes.

Also the scales might be financial or non-financial. Lee and Teseng pointed that financial scales connected directly with long term objectives, measuring the success of strategic plans and the ability to adapt with changes in external environment. Financial scales consist of ROI, sales growth, income before taxes, net profit, ROA, etc [27].

While operational scales provide a hidden image for performance such as new products, product quality, market share, innovation, customer retention, social responsibility [8,38].

Al-hady defined high performance in universities "The performance that helps in achieving strategic objectives and effectiveness according to quality scales". KM can improve this performance in high rates [34, 47]. Rani, Sania, AL-Hayaly and Alnajjar added that KM positively affects organizational outcomes of organization innovation, product improvement and employee improvement[54,55].

These researchers [1, 5, 14, 29] mention the main fields of high performance in universities:

- **Reduce costs and increase profits**: Educational institutions seeking to cut costs by reducing the costs of services provided to students and the level of operational and administrative costs of operations, leading to an increase in profits.

- **Improve Quality**: The overall quality management approach depends on the joint efforts by which the participation of all individuals on an ongoing basis to improve the institution's performance.

- **Scientific research**: Scientific research in educational institutions is the key element of high performance, which helps in the advancement of professional practice and gain the confidence of the industry, and demonstrates the intellectual contributions of the faculty member.

- **Community Service**: It is an essential element in evaluation process of high performance that clarifies the role of the institution in civil society service and its contribution to solving its problems.

2.4 Knowledge management maturity:

KMM determines the level of organization existing capacity affecting on knowledge management processes, where every organization particular track a special sequence of maturity. Knowledge management maturity models describes the steps of growth, which is expected to be up to the organization to develop their knowledge management and organizational performance [23,57]. Also it determines the stages of institutional knowledge maturity, which is expected to pass by any institution on its way to improve their practices and competitive advantages and thus improve the overall performance of the institution [46].

O'Brien, Hoss and Schussed determined the importance of KM measurement as follow [18, 32]:

- Helps measure the institution to identify knowledge gaps they have.

- Determine the impact of knowledge gaps on the performance, growth and development of the institution.
• Helps to manage knowledge possessed by the organization more efficiently.
• Provides the enterprise with analytical tools works to promote knowledge and address gaps.
• Identify strategies and activities to fill those gaps in knowledge.

Asian productivity organization developed a model to measure KMM, designed after a study lasted for five months. This model has been adopted by the Asian Organization of Production (APO) to develop tools and knowledge management techniques. Working team consist of experts in knowledge management from Japan, Singapore, India, China, Malaysia, Thailand, Vietnam and the Philippines [51]. This model consists of a general framework for knowledge management, knowledge management tool and measuring tool to measure the maturity of knowledge management as shown in Figure 1.

![Figure 1: KM framework](image)

This framework consists of a row of enablers for knowledge management, starting from the organization's mission and vision in the middle of the circle, which sets strategy and organization capabilities.

Then we move on to the second frame, which includes knowledge management processes and the factors that accelerate the processes of knowledge management like leadership, individuals, processes and technology. In the last phase, the results of using knowledge management represented by quality, productivity, profitability and growth of the organization.

The model defined seven fields to measure KM: KM Leadership, process, people, technology, knowledge process, learning and innovation and KM outcomes.

After measuring KM, the results showed on a radar chart identifying the areas that have strength and the areas that need improvement and the organization has an opportunity to improve them (see Figure 2).

![Figure 2: Radar Chart](image)
The next step is to determine the level of maturity of knowledge management in the organization and comparing it with the maturity levels model.

![Figure 3: Maturity levels model](image)

Knowledge management maturity consist of five levels (as seen in Figure 3) is composed as follow:

1- Reaction: The organization is not interested in knowledge management and focused on enhancing productivity and competitiveness.

2- Initiation level: The organization begin to realize the need for knowledge management or has already begun in a pilot project for knowledge management.

3- Expansion: Knowledge management is fully applied.

4- Refinement: Organization evaluates knowledge management on an ongoing basis.

5- Maturity level: Knowledge management exist primarily as a driver in every organization's process.

2.5 KMM and high performance:

Knowledge management is not the only factor affecting performance and output of the organization, but it is one of many factors. Factors enabling high performance are leadership style, strategic planning, measurement, analysis, knowledge management, customers oriented, human resource management and administrative processes [52].

In first or second level of maturity, KM operations are local and lead to focus on a particular section in the organization without a comprehensive strategy to support those efforts. Here we can say that the impact of KM processes is not dramatically evident on the organization's performance. Therefore, we can say that the first and second level of knowledge management maturity levels represent normal performance [6].

When reaching level three and four, organization begin to integrate knowledge sharing and collaboration in its main operations and set resources for knowledge management. Employees in levels three and four using technology and standardized tools to capture, transfer, share and re-use of knowledge in the organization.

Finally, KMM at level five represent full integrated knowledge management operations and employees understand the role of knowledge sharing and cooperation in improving the performance for individuals and organization. Such behavior supports creative activities, leads to better competitive advantages and enhance the value chain to customers and suppliers [19, 20, and 23].
The relation between the model used in this study (Figure 4) and high performance leads to the following main hypothesis in this study:

H1: There is a statistically significant effect for using the Asian knowledge model to measure HEI high performance.

As the previous model suggest, leadership plays a critical role in the success of KM implementation. If there is a strong commitment at executive management level to change the organizational culture, then the organization will be able to create the values that lead to knowledge sharing [1,4]. To achieve that, organization needs a leadership style able to manage organization elements to achieve the best and maximum advantage of the existing knowledge in organization to improve performance. This leads to the following first sub-hypothesis in this study:

h1-1: There is a statistically significant effect for KM leadership on HEI high performance.

Operations are considered a complete knowledge inside organization. As value chain reflect how far can organization add value in each production step to achieve organizational efficiency and increase performance [23, 33]. This leads to the following second sub-hypothesis in this study:

h1-2: There is a statistically significant effect for operations on HEI high performance.

Many KM research confirmed individual’s impact on high performance. These authors [1, 23, 37, 41] explained that individual’s motivations and method of interpretation, transfer and implementation of knowledge management processes influence greatly in determining the shape and nature of knowledge and how to manage it. Therefore, individual is the most powerful element of an effective knowledge management implementation. This leads to the following third sub-hypothesis in this study:

h1-3: There is a statistically significant effect for people on HEI high performance.

New technology plays a major role in performance improving by providing the right information at the right time and using them to rationalize decisions. Add to that technology needed to enhance sharing knowledge and learning inside organization. The integration between knowledge and organizational process enhance performance and competitive advantages [22, 23, and 35]. This leads to the following forth sub-hypothesis in this study:

h1-4: There is a statistically significant effect for technology on HEI high performance.

Knowledge process like generation, storage, distribution and implementation facilitates work within the organization. The presence of a specialist team to capture knowledge and encourage workers to invest and participate it, with the existence of an effective leadership leading those operations to bring harmony between them reduce the total cost of work and increase financial returns for organization. This leads to achieve creativity, innovation and high productivity [5, 24, 50, and 53]. This leads to the following fifth sub-hypothesis in this study:

h1-5: There is a statistically significant effect for Knowledge process on HEI high performance.

Hila and Sangjae discussed learning and creativity in organization. Modern organizations characterized with continuous learning and applying the gained experience in their daily routine. Organizations seeking to recruit the experience gained from learning process in continuous performance development [15, 43]. This leads to the following sixth sub-hypothesis in this study:

h1-6: There is a statistically significant effect for learning and innovation on HEI high performance.
KM outcomes must reflect on effectiveness and efficiency inside the organization. This leads to high performance at individual level and organizational level [23, 24, and 41]. This leads to the following seventh sub-hypothesis in this study:

h1-7: There is a statistically significant effect for KM outcomes on HEI high performance.

Other authors and KM experts added other variables and suggested new models which are more manifold. Those models included the previous variables and variables like intellectual capital, agility, training and cultural capital [21, 36, 45].

3. Methodology

The main aim of this study is to measure knowledge management maturity in higher education institutions to determine the impact of knowledge management on high performance. Furthermore, the study aims to compare knowledge management maturity between universities and intermediate colleges.

3.1 Study population and sampling:

This study conducted during the academic year 2015-2016 at Al-Quds Open University, Al-Azhar University, Palestine Technical College, in Gaza Strip – Palestine. It is highly reputable one and established in 1991. The population are (917) employees, the control sample (733). The usable sample was (520), which makes the response rate (71%).

3.2 Research instrument:

The first dimension referring to the model used in the study, is a prepared in advance questionnaire by the Asian productivity organization (KM Assessment Tool). The second dimension of the instrument which measure high performance in HEIs was developed by the current authors with the help of other research literature [1, 5, 29, and 50].

A five-point Likert scale of agreement was used for measurement, running from “Strongly Agree” to “Strongly Disagree”, with a Neutral category for scale midpoint as shown in Table1.

3.3 Validity and reliability assessment:

The study adopted Cronbach’s α to measure the internal consistence reliability of the questionnaire. The results showed that Cronbach’s α values for all dimensions were > (0.5). It indicated that the design of the questionnaire had a high internal consistency.

Table 1: Research instrument

<table>
<thead>
<tr>
<th>Dimension 1: (Ind.V.)</th>
<th>No. of statements</th>
<th>Dimension 2: (D.V.)</th>
<th>No. of statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat 1.0: KM Leadership</td>
<td>6</td>
<td>Cat 5.0: Knowledge Processes</td>
<td>6</td>
</tr>
<tr>
<td>Cat 2.0: Processes</td>
<td>6</td>
<td>Cat 6.0: Learning and Innovation</td>
<td>6</td>
</tr>
<tr>
<td>Cat 3.0: People</td>
<td>6</td>
<td>Cat 7.0: KM Outcomes</td>
<td>6</td>
</tr>
<tr>
<td>Cat 4.0: Technology</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.4 Statistical procedures:

Several statistical tools were used for data analysis and hypotheses testing, including reliability Correlation using Cronbach’s alpha, “ANOVA”, Simple Linear Regression, OLS-Ordinary Least Squares and Step Wise Regression.
4. Data analysis and discussion of results:

Simple linear regression and "ANOVA" tests were used to test hypotheses. Simple linear regression used to test whether there is an impact for one independent variable on a single dependent variable (High performance). The results are shown in Table 2. The results of regression test indicate that sig. is less than (0.05) for all independent variables, which mean that there are significant statistically effect for independent variables on performance excellence.

Pearson coefficient and regression coefficient sign for all independent variables was positive. This result means whenever the value of independent variables increase, there will be an increase in performance.

Changes in the independent variable is responsible for the interpretation of a rate (r2) of all the changes that occur in performance, and there is a rate (100 - r²) due to other factors specific to the other independent variables and other factors not mentioned in the model, in addition to the random error.

Table 2 reveals that the findings of significance level are less than (0.05), which means that we can rely on the previous model and circulating the sample results on research community. Therefore, the results of the analysis proved the existence of a relationship between the independent variable and the dependent variable, and each dimension in the independent variable effect individually on the dependent variable. Therefore, we accept the main hypothesis and its sub-hypotheses.

Table 2: Simple Linear Regression and "ANOVA"

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sig.</th>
<th>Decision at (\alpha = 0.05)</th>
<th>Regression coefficient</th>
<th>Pearson coefficient r</th>
<th>sign</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>KM Leadership</td>
<td>0.0</td>
<td>Significant</td>
<td>0.352</td>
<td>0.526</td>
<td>+</td>
<td>27.66%</td>
</tr>
<tr>
<td>Processes</td>
<td>0.0</td>
<td>Significant</td>
<td>0.320</td>
<td>0.495</td>
<td>+</td>
<td>24.50%</td>
</tr>
<tr>
<td>People</td>
<td>0.01</td>
<td>Significant</td>
<td>0.423</td>
<td>0.522</td>
<td>+</td>
<td>27.29%</td>
</tr>
<tr>
<td>Technology</td>
<td>0.002</td>
<td>Significant</td>
<td>0.302</td>
<td>0.427</td>
<td>+</td>
<td>18.23%</td>
</tr>
<tr>
<td>Knowledge Processes</td>
<td>0.02</td>
<td>Significant</td>
<td>0.269</td>
<td>0.292</td>
<td>+</td>
<td>8.52%</td>
</tr>
<tr>
<td>Learning and Innovation</td>
<td>0.04</td>
<td>Significant</td>
<td>0.199</td>
<td>0.258</td>
<td>+</td>
<td>6.65%</td>
</tr>
<tr>
<td>KM Outcomes</td>
<td>0.0</td>
<td>Significant</td>
<td>0.224</td>
<td>0.284</td>
<td>+</td>
<td>8.06%</td>
</tr>
</tbody>
</table>

Step wise regression conducted to identify the effect of each variable in KMM model on the dependent variable and excluding of other insignificant variables.

Table 3, shows that four variables were effecting significantly (Processes, KM leadership, People, KM Outcomes,) and these variables were not effecting (Learning and Innovation, Technology, Learning and Innovation).

The explanation for that is the effect for the four variables were very strong on high performance more than (Knowledge Processes, Learning and Innovation, Technology) from the point of view of the sample.

Table 3: Step Wise R

<table>
<thead>
<tr>
<th>Rank</th>
<th>Variable</th>
<th>T</th>
<th>Sig.</th>
<th>Decision at (\alpha = 0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Processes</td>
<td>3.2</td>
<td>0.003</td>
<td>significant</td>
</tr>
<tr>
<td>2</td>
<td>KM Leadership</td>
<td>3.16</td>
<td>0.004</td>
<td>significant</td>
</tr>
<tr>
<td>3</td>
<td>People</td>
<td>2.69</td>
<td>0.011</td>
<td>significant</td>
</tr>
<tr>
<td>4</td>
<td>KM Outcomes</td>
<td>2.11</td>
<td>0.032</td>
<td>significant</td>
</tr>
<tr>
<td>5</td>
<td>Knowledge Processes</td>
<td>1.35</td>
<td>0.68</td>
<td>insignificant</td>
</tr>
<tr>
<td>6</td>
<td>Learning and Innovation</td>
<td>1.52</td>
<td>0.82</td>
<td>insignificant</td>
</tr>
<tr>
<td>7</td>
<td>Technology</td>
<td>0.49</td>
<td>0.67</td>
<td>insignificant</td>
</tr>
</tbody>
</table>
According to the model, radar chart which had been done by calculating the response of each paragraph in sub-domains rates as shown in Table 4. The total score was (126.94) which means that KMM is in level three (Expansion). University begin to integrate knowledge sharing and collaboration in its main operations and set resources for knowledge management.

Employees in levels three using technology and standardized tools to capture, transfer, share and re-use of knowledge in the organization.

In that level of maturity, university must expand here KM implementation to reach level four where KM measuring is a continuous process. Also from table 4 we found that dimensions (5, 6, and 7) need to be improved.

Table 4: Radar Chart

<table>
<thead>
<tr>
<th>No.</th>
<th>Sub-Domain</th>
<th>Al-Quds (5-30)</th>
<th>Al-Azhar (5-30)</th>
<th>Palestine Technical College (5-30)</th>
<th>College of Applied Science (5-30)</th>
<th>College of Science and Technology (5-30)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Leadership</td>
<td>22.16</td>
<td>24.62</td>
<td>20.08</td>
<td>19.65</td>
<td>20.01</td>
<td>21.30</td>
</tr>
<tr>
<td>2</td>
<td>Processes</td>
<td>24.13</td>
<td>26.71</td>
<td>18.50</td>
<td>17.61</td>
<td>17.67</td>
<td>20.92</td>
</tr>
<tr>
<td>3</td>
<td>People</td>
<td>20.13</td>
<td>18.82</td>
<td>18.01</td>
<td>17.30</td>
<td>16.89</td>
<td>18.23</td>
</tr>
<tr>
<td>4</td>
<td>Technology</td>
<td>17.92</td>
<td>15.94</td>
<td>17.57</td>
<td>17.46</td>
<td>16.48</td>
<td>17.07</td>
</tr>
<tr>
<td>5</td>
<td>Knowledge Processes</td>
<td>11.23</td>
<td>12.68</td>
<td>16.33</td>
<td>16.24</td>
<td>15.54</td>
<td>14.40</td>
</tr>
<tr>
<td>6</td>
<td>Learning and Innovation</td>
<td>14.36</td>
<td>16.39</td>
<td>15.87</td>
<td>15.51</td>
<td>14.90</td>
<td>15.40</td>
</tr>
<tr>
<td>7</td>
<td>KM Outcomes</td>
<td>16.56</td>
<td>17.98</td>
<td>14.80</td>
<td>14.51</td>
<td>14.09</td>
<td>15.59</td>
</tr>
<tr>
<td></td>
<td>Total (42-210)</td>
<td>126.49</td>
<td>133.14</td>
<td>121.19</td>
<td>118.31</td>
<td>115.60</td>
<td>122.91</td>
</tr>
</tbody>
</table>

5. Conclusions

The concept of KM implementation is already known in Palestinian HEI. Many studies conducted on KM. The originality of study comes from being discussing KMM using a solid model. The overall findings of the current study suggest that KMM is leads to high performance. KMM assessment shows that the HEI maturity level is in the second level where the organization begin to realize the need for knowledge management or has already begun in a pilot project for knowledge management where knowledge sharing and collaboration is common.

Findings also support the main hypothesis and its sub-hypotheses. The most important factors effecting high performance are: Processes, KM leadership, People, KM Outcomes. Furthermore, the model effect totally on high performance. Also we can find that KMM for universities is at the third level, while for intermediate colleges is in the second level. Therefore, more co-operation between both types of HEI must be adopted especially in knowledge sharing.

References

S. S. Chahal, S. Savita, Knowledge Sharing Among University Teaching Staff: A Case Study, Maharshi Dayanand University, Rohtak, India, 2014.

A. Gad, The management of universities and institutions of higher education, curriculum development and optimization strategies, Dar modern writers, Cairo, Egypt, 2010.

S. Hadi, Change the Arab higher education institutions towards quality management quality and high performance, Arabic magazine to ensure the quality of university education. 11 (2013) 243-305.

C. Hubert, D. Lemons, APQC’s Levels of Knowledge Management Maturity, APQC, 2010, pp. 1-24.

[33] H. Pedrona, Knowledge management as one of the basic pillars in the survival of business organizations and increase their efficiency, in Fifth International Conference on Intellectual Capital in the Arab business organizations in the light of modern economies, Hassiba Ben Bu Ali University, Chlef, Algeria, 2011.

[34] L. Petrides, T. Nodine, Knowledge Management in Education: Defining the landscape, The Institute of Knowledge Management in Education, CA, USA, 2003.

J. Lee, Y. Shiue, C. Chen, Examining the impacts of organizational culture and top management support of knowledge sharing on the success of software process Improvement, Computers in Human Behavior. 54 (2016) 462-474.

