Paper Titles in Periodical
International Letters of Social and Humanistic Sciences
Volume 66
Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILSHS > Volume 66 > An Historical - Didactic Introduction to Algebra
< Back to Volume

An Historical - Didactic Introduction to Algebra

Full Text PDF

Abstract:

In this Paper we Consider a Teaching Educational Introduction to Ideas and Concepts of Algebra. we Follow a Historical Path, Starting by the Egyptians and the Babylonians, Passing through the Greeks, the Arabs, and the Figure of Omar Khayyām, for Coming to the Middle Age, the Renaissance, and the Nineteenth Century. Interesting and Peculiar Characteristics Related to the Different Geographical Areas in which Algebra has Developed are Taken into Account. the Scientific Rigorous Followed Treatment Allows the Use of the Paper Also as a Pedagogical Introduction to this Fundamental Branch of Current Mathematics.

Info:

Periodical:
International Letters of Social and Humanistic Sciences (Volume 66)
Pages:
154-161
Citation:
P. Di Sia, "An Historical - Didactic Introduction to Algebra", International Letters of Social and Humanistic Sciences, Vol. 66, pp. 154-161, 2016
Online since:
February 2016
Authors:
Export:
Distribution:
References:

[1] N. Bourbaki, Éléments de mathématiques, Hermann, Paris (1939).

[2] http: /en. wikipedia. org/wiki/Tally_stick.

[3] D. R. Hofstadter, Gödel, Escher, Bach: un'eterna ghirlanda brillante, Adelphi, Milano, ISBN 88-459-0755-4 (1990).

[4] V. J. Katz, A History of Mathematics: An Introduction, Addison-Wesley (1998).

[5] G. Masini, Storia della Matematica, Editore SEI, collana Sei frontiere (2002).

[6] L. Sigler, Fibonacci's Liber Abaci, Springer, ISBN 0-387-40737-5 (2003).

[7] C. B. Boyer, Storia della matematica (traduzione di Adriano Carugo), Mondadori, ISBN 88-04-33431-2 (1991).

[8] S. Maracchia, Storia dell'algebra, Liguori (2005).

[9] L. Toti Rigatelli, Matematica sulle barricate. Vita di Evariste Galois, Sansoni, Firenze (1993).

[10] A. Cartocci, La matematica degli Egizi, Firenze University Press, ISBN 978-88-8453-581-8 (2007).

[11] J. P. Allen, Middle Egyptian (7a ed. ), Cambridge University Press, New York, ISBN 978-0-521-77483-3 (2007).

[12] R. Franci, L. Toti Rigatelli, Storia della teoria delle equazioni algebriche, Mursia, Milano (1979).

[13] A. Dahan-Dalmedico, J. Peiffer, Une histoire des mathématiques, Editions du Seuil, ISBN 2-02-009138-0 (1986).

[14] L. Lombardo Radice, La matematica da Pitagora a Newton, GEM Edizioni, collana Scienza (2010).

[15] T. Heath, A History of Greek Mathematics, Dover, ISBN 0-486-24073-8 (1981).

[16] L. Mordell, Diophantine equations, Academic Press, Londra, ISBN 0-12-506250-8 (1969).

[17] A. D. Aczel, L'enigma di Fermat, Net, ISBN 88-515-2082-8 (1998).

[18] S. Singh, L'ultimo teorema di Fermat, Rizzoli, Milano, ISBN 88-17-11291-7 (1999).

[19] F. Rosen, The Algebra of Mohammed Ben Musa, Kessinger Publishing, ISBN 1-4179-4914-7 (2004).

[20] R. Rashed, The development of Arabic mathematics: between arithmetic and algebra, Springer-Verlag (1st ed. 1994), collana: Boston Studies in the Philosophy of Science, ISBN-13: 978-9048143382 (2013).

[21] F. Luccio, La struttura degli Algoritmi, Boringhieri, ISBN 88-339-5265-7 (1982).

[22] E. G. Browne, Literary History of Persia (4 vol. ), ISBN 0-7007-0406-X (1998).

[23] D. M. Burton, The History of Mathematics: An Introduction, McGraw Hill (1997).

[24] A. M. Piemontese, Storia della letteratura persiana, 2 vol., Fratelli Fabbri, Milano (1970).

[25] A. Posamentier, I. Lehmann, I (favolosi) numeri di Fibonacci, Gruppo editoriale Muzzio, ISBN 978-88-96159-24-8 (2010).

[26] A. Weil, Teoria dei numeri, Einaudi, ISBN 88-06-12745-4 (1993).

[27] P. Freguglia, Verso una nuova matematica. Algebra e geometria nel cinquecento; i problemi di Diofanto: Bombelli, Stevin, Viète e Fermat, Storia della scienza, vol. IV, Roma: Istituto della Enciclopedia italiana (2001).

[28] L. Infeld, Tredici ore per l'immortalità: la vita del matematico Galois, tradotto da G. Galtieri, Milano, Giangiacomo Feltrinelli Editore (1957).

[29] P. Di Sia, Fondamenti di Matematica e Didattica I, Aracne Editrice, Roma (Italy), ISBN 978-88-548-5889-3, 214 pp. (2013).

[30] P. Di Sia, Fondamenti di Matematica e Didattica II, Aracne Editrice, Roma (Italy), ISBN 978-88-548-7108-3, 344 pp. (2014).

[31] P. Di Sia, The Laboratory of Mathematics in the Primary School: a Practical Approach for Understanding and Learning, International Letters of Social and Humanistic Sciences (ILSHS) (ISSN: 2300-2697), N. 3, pp.21-28 (2015).

DOI: https://doi.org/10.18052/www.scipress.com/ilshs.44.21
Show More Hide
Cited By:
This article has no citations.