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ABSTRACT

In this research we built a SystemC Level-1 data cache sys
architectural environment, with each processor having its own |
Transform and Random trace files we evaluated the cache pe
hits/misses, of the caches using snooping and directory-b, protocols. A series of
experiments were carried out, with the results of the at the directory-based
MOESI cache coherency protocol has a performance snooping Valid-Invalid cache
coherency protocol.
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1. INTRODUCTION

s have their memory organized hierarchically and this
memory nomenclat ed the memory hierarchy (Hennessey and Patterson,
2007; Stalling, 20, the memory module is to the processor, the smaller and faster
are the comp i n inverse relationship between the size and speed of the
memory m . er, according to Hennessey and Patterson (2007) fast memory comes
ese modules are relatively expensive per byte. Altogether the

UU )
omputer program and data are typically stored on non-volatile storage such as disk
drives and@pes before execution but these are first loaded into main memory, which is much
faster, but still significantly slower than the registers (Hennessey and Patterson, 2007, p. 288-
299). As an intermediate step in the memory hierarchy, caches were invented to avoid the
penalties of memory access by keeping the most recently used data and delivery is much faster
to the processor. Cache memories are therefore the conceptual foundation for this research.
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2. PROBLEM STATEMENT

As has been observed through various computer architecture research the problems facing
the multicore processor systems at large are that, processor speeds are “rising dramatically at
approximately 75 % per year”, according to McKee (2004). The memory clock speeds at the
same time are increasing steadily at a paltry 7 % per annum (Hennessey and Patterson, 2007).
The research by NASA and scientists at the University of Virginia confirm this dilemma, that,
there is a divergence in the operating speeds of memory architectures and processor systems
referred to as the Memory Wall (McKee 2004). The challenge facing computer scigatas

speeds as the processor architecture.

The computing industry facing the dilemma of the memory wall resg
performance on computing systems should be as a result of buil
prefetching non-blocking cache memory systems (McKee, 2004).

This resulted in the computing industry building processo
larger cache memory systems and more latency tolerance on
organized hierarchically, with the memory components ne eing smaller

as fast as is possible to the processor. The memory
the bottleneck for processor performance, and mod

main memory by having regular access pat
the cache memory and subsequently channe
the requested data or instruction i

Complications arise wheg @ ors with each having a local cache have a
0 copies in the other caches, undefined cache

Cache cohere '@ruired to maintain the cache consistency of all the data
hes (Leiserson and Mirmam, 2008). The cache coherency

questions:

1. To what extend do the number of processors in multiprocessor architectures affect the
performance of Level 1 (L1) data cache memory systems?

2. How do cache coherency protocols influence the Levell data cache memory performances
of multiprocessor architectures?
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3. THEORETICAL FRAMEWORK

The problems that have been identified for uniprocessors have been addressed by the
development of multi-core architectures. The real world is parallel, and the reason why single
processors have faced problems is that they have been executing instructions sequentially in
short bursts of time. The real explanation why chip companies shift to multi-cores is prosaic in
the sense that it includes several reasons that are not within the context of this research. There
is an inherent concept that multi-cores increase the speeds of execution of multiple tasks, but
achieving parallelism is not a trivial task (Nussbaum and Smith, 2002). What are the
or problems which multi-core designers face? Let us look into these problems big

3. 1. Programmability

Historically parallel processing computer architectures and mu
computer architecture designers and system software developers pr:

task for programmers is on the “parallelisation of sequentg
The multi-core programming model should be based

cores (Duller and Towner, 2003; Towner et al.,
sentiments about programming multi-cores (Leiser:
core processors are parallel computers an
program”. Chris Jesshope identified 3 diffe ine/programming models which
are sequential; ad-hoc parallel and fully pa sshope, 2008). Even though these
programming models exist there is s the 1ssue of standards and automation of

m, 2008) wrote that “multi-
are notoriously difficult to

3. 2. Scalability

Multi-cores red cy but one of the challenges that multi-core systems
developers face is d t are scalable. Multi-cores produce tangible benefits
but making the p | brings with it programming challenges as mentioned before.
Increasing mo chip might entail that the whole system has to be rewritten

(Blyler, 20 i , 2007). Rewriting code for more cores has a direct implication on
production ¢ eting times and consumers end up paying for these shortfalls. In

ores present problems in the communication channels used by the processing
elements to communicate between or to each other. PicoChip identified the “saturation of the
communications links between processing elements” (Panesar et al., 2005, 2006; picoChip,
2007) as a major drawback especially to multi-cores with more than 10 processors. Race
conditions are also “pernicious bugs” (Leiserson and Mirmam, 2008) that are difficult to detect.
There is always need to have a reliable and efficient way to eliminate race conditions. Designing
the interconnection channels between the various processing elements is crucial in order to
achieve higher performance gains. The data or instructional dependencies may cause some of
the processors to be idle hence loosing performance gains. The width of the communication
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channel is an important factor to consider. There is a concern that power dissipation can increase
with multiple processing elements operating concurrently.

3. 4. Managing a heterogeneous architecture

Multi-core systems are in most cases constituted by different types of processors and
technically the architecture is referred to as a heterogeneous architectures. The heterogeneous
architecture is not as easy to program as the homogeneous architecture that consist of similar
processing elements. Homogenous architectures are easy to implement on silicon (plcoChlp,
2007, Hobson et al., 2006). Heterogeneous architectures provide greater yields 4
speeds because they 1nclude dedicated processing elements for specific applicats
elements are designed to speed up code.

3. 5. Cache Memory Systems

speeds
memory
oore’s Law

As mentioned earlier processor speeds have been scaling u

clock cycles have been decreasing overs time (processor by
and the memory by about 7 % per year, Less’ law) (Jessho ., 2006). There
have been of course attempts to increase memory b cing concurrency in
memory accesses through pipelining (Jesshope 20 obson et al. 2006), but, this requires
regular memory access patterns and random acc memory bringing with it
degradation in memory performance (Chevance, 20 08). The memory hierarchy
brings conflicting requirements in the me uting systems require a large
and fast memory to scale up performances.
A memory hierarchy attempts to make

in smaller faster memories close tgQ Hennessey and Patterson, 2007). Electronic
systems slow down as they incrgg in § ample the speed of light is approximately Ins
for 30cms and 1ns is 3 clock he art processor (Jesshope, 2008). Memory
C cn power and performance, as is the processor

ennessey and Patterson, 2007). The key indicators of
dwidth and latency (Hennessey and Patterson, 2007).

DRAM is roSgh in the same row, cell address space (CAS) cycles. Memory
» ; hich data can be accessed (e.g. bits per second), Bandwidth is

help to loc¥®lise data (Jesshope, 2008). Computing scientists also designed banked memory
systems to provide high bandwidth to random memory locations (Hennessey and Patterson,
2007; Jesshope, 2008), but, some access patterns still break the memory (Jesshope, 2008).
Processors that tolerate high-latency memory accesses have been designed but this requires
concurrency in instruction execution (Hennessey and Patterson, 2007; Jesshope, 2008). Caches
are largely transparent to the programmer, but, programmers must be aware of the cache while
designing code to ensure regular access patterns (Hennessey and Patterson, 2007; Jesshope,
2008, 2009, 2011). Caching the right data is the most critical aspect of caching to improve
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maximum system performances. More catch misses end up reducing performance instead of
improving and this might end up consuming more memory and at the same time suffering from
more cache misses lead to system deadlocks, where the data is not actually getting served from
cache but is re-fetched from the original source. The development of a cache simulator requires
a deeper understanding of how the memory hierarchy operates (Schintke, Simon, and Reinfield,
2012).

4. DESIGN AND IMPLEMENTATION

This research study is based on a simulating a 32KB 8-way set-associay
Cache. In this research study we have concentrated on the Shared Memo

simulator, from having one processor to a maximum of eight proce
files. We have to modify the architecture to make sure that each p

this research is not unique as Jesshope (2011), sugg
up processor frequencies. Associativity of caches (
that determine cache performance.

The implementation environment ba,
2005; Bhasker, 2009; Ma, 2011) resulted 1
the Arch Linux environment. We develope
CPU, Memory, Cache, Bus and us
For our simulation we used t
with GNU C++ compiler v

a 32KB Level 1 data cache within
code for the implementation of the
011) Trace Files used to drive the simulator.
Arch Linux 3.8 (http://www.archlinux.org)
one of the lightweight GNU/Linux based
ux takes place as if you will be building your
own operating system i ommand driven. The three main issues that one should
is the graphics, network especially wireless networks
¢ KDE desktop environment for our Arch Linux environment

Al programming norms of increasing the programming complexity as the demands
of the systeth increases. We started by implementing a bus snooping cache coherence protocol,
the Valid-Invalid protocol. The term ‘snooping’ allows for each cache node in the system to
monitor the activities on the bus to which each of the cache nodes can write exclusively. In the
event of a write enquiry if a cache node realizes that another processor belonging to another
cache node has written to an address which it has a copy, the cache line containing a stale copy
of the associated memory segment is immediately invalidated. The programming logic behind
this protocol is that it does not allow for two cache lines to be valid in different cache nodes, in
the event that they are mapped into the same set and even share the same address tag. The
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implementation of this protocol served as the basis for diagnosing anticipated programming
problems and we used the debugging traces to eliminate errors until we were satisfied with the
program executions.

We then implemented the MOESI Cache coherence protocol which is theoretically and
programmatically built as an extension to the MESI protocol. The MESI protocol is the most
common cache protocol that supports the write-back replacement strategy. The acronym MESI
indicates that the protocol supports four cache line state transitions and these are Modified,
Exclusive, Shared and Invalid, which logically implies that it implements the same cache line
invalidation scheme as the valid-invalid cache coherency protocol. The difference tg

caches are allowed to make the cache line dirty if the cache line is in a modi§
state. The MOESI cache coherence protocol introduces a fifth cache J4
‘owned’ which means it has characteristics of exclusive modified and

shared, and is not supposedly written back to memory before the
As a starting point we build a single 32KB 8-way set ass

the cache has to read
latency. We only used the
simulator. The result of the

has been made from an 8-bit wire, therefore to fill t
the memory 32 times. This was also useful to simu

2 Uniprocessor.

Value

55329 ns

6140 times

6081 times

Read Hit 5113 (83.3%)

Read Miss 1027 (16.7%)

Write Hit 5017 (82.5%)

Write Miss 1064 (17.5%)

The results in the show that the CPU made 12221 requests composed as 6140 read
requests and 6081 write requests. The results further show that more than 80% of the requests
hit the cache, with an execution time of 55329 ns.

4. 1. Comparative Results Using Graphs

We plotted graphs to make a fair comparison of the trace files used and also the snooping
and directory based cache coherency protocols. We made a comparative analysis of the
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protocols considering that there is no bus snooping, no barrier synchronization and with barrier
synchronisation for each protocol. We started by comparing the Average Cache hit Rate and
the two graphs represented by Figure 1 and Figure 2 indicate that there is no major significant
difference between the Valid-Invalid and MOESI cache coherence protocols in terms of the
cache hit rates, when random trace files are used. The different configurations made to the
simulator did not show distinguishable cache performance indicators between the two sets of
traces. The MOESI protocol theoretically outperforms the Valid-Invalid protocol.
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Figure 2. Average Hit Rate Using Fast-Fourier Transform Traces.

The other result that was very important to the SystemC cache Simulator experiment was
to investigate the contention of the bus interconnection network. This was achieved by taking
a count of the time stamps (delta cycles) in which the bus had more than one request to handle.
This was handled by a member function in the Bus module which was designed to indicate the
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number of requests in the queue. The bus contention when using the two sets of traces is shown

by Figure 3 and Figure 4.
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Figure 4. Average Bus Contention Using Fast-Fourier Transform Traces.

The synchronised cache simulator runs show a reduction in the bus contention. The
synchronisation event relieves the interconnection network as it oblige the processor nodes to
wait until the barrier threshold instead of putting them in a race condition towards the end of
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each trace. The MOESI cache coherence protocol exhibit a smaller footprint on the
interconnection network (bus), due to the deferred writes, but consequently uses more memory
resources.

5. CONCLUSIONS

The SystemC cache simulator we have developed initially showed some feeble plugs,
maybe because, of the fact that the trace files we have used in the simulation were de51gned to
pick up read and write addresses for (hits/misses), instead of showing how the datg :
around in the system. In that way we would actually have testified that th
constituted in the system have actually performed the reads and writes of the
supposed to. We also noticed that even if the trace files provided for ¢

simulator is correct. We introduced a component of non-determinj
different cache nodes attempted simultaneously to access the bus,

stale data value was not send back to the bus. The
situation by implementing two further cache coher ns, and these are the write-
invalidate or the write-update.

As Jesshope (2011) argued that wy

hardware in the form of a buffer that wil ' addresses of the requests, and the
associated data elements, forcing ai ory to behave the same as the cache. We
implemented the write-invalid i onservative and compatible with our chosen
cache coherency protocols. ; iy the existence of duplicate read requests by
allowing for a small degr. gptimizations. We studied the graphs and come to
arotocols are comparable, even when we use different
. We therefore use the experimental data and graphs

cvel-1 (L1) data cache memory systems?

ave noted that the runs of all the cache simulator experiments we have made did not
end up in M inconsistent state. The execution time (simulation time) of the cache simulator
increases as we have more processor cores. The average hit rate did not increase significantly
with the increase of the processor cores. We have also noted that other factors such as snooping
have a direct effect on the performance of the cache. From the results of the simulations we
could see that increasing the number of cores does not imply an increase in cache performance
as there are coherency issues to be taken care of. The deactivation of the snooping on the
interconnection network subsequently increased the average hit rate even when using different
trace files.
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Without snooping on the bus, there is now invalidation in case of probe write hits,
meaning that the cache writes to a shared cache line and the status of the cache line remains the
same. In such an instance the cache gets a higher hit rate. As performance is determined by the
hit rate we would argue that the cache performs much better without snooping. However when
we deactivated bus snooping we could not guarantee and assure the integrity of the cache line
when we repeatedly run the cache simulator. The other factor that comes into play when we
increased the processor nodes is synchronisation of the caches and taking care of the cache
misses. One way of taking care of this aspect is to optimize the compiler, by code rearrangement
including data rearrangement. Loop 1nterchange and cache blockmg could also op

system.
Rightfully we can say that given optimizations in the compiler,
multibanked caches in the multiprocessor system, we can increas

aspect to consider in a multiprocessor environment.
cache coherency protocols affected the performa
question to answer is the folloing:

How do cache coherency protocols in 1) data cache memory
performances of m

We have used trace caches to reduce
cache hit rate. Each implementatiog

our system henceforth improve the
cache simulator had to run a set of Random
r d 8 processor environments. The comparison
graphs showed that the dire ¢ coherence protocol (MOESI) has a slight

Oherence protocol (Valid-Invalid). Though the
difference can be rega lly insignificant, MOESI protocol outperforms Valid-
Invalid protocol bec ata from one cache to another cache. In such cases the
cache miss does the cache has to read/write from/to memory. Lesser memory

ratio of the MOESI protocol is better than the hit ratio in Valid-Invalid
utive writes will always contribute to a cache miss. In the MOESI

a lower contention rate of the bus usage. One of the reasons for this could
access rate in Valid-Invalid protocol is more than in the MOESI protocol.
s will be used when the cache modules want to have memory access, higher
memory a®®ess will imply a higher request to use the bus. Following the memory hierarchy
principles, accessing the bulk shared memory will take more time compared to accessing
another cache. The Valid-Invalid have to wait longer to access the memory than in MOESI
protocol.

Unexpectedly in some instances the MOESI cache coherence protocol used more memory
writes which might be as a result of a bug in our SystemC cache Simulator. We have actually
managed to preserve the coherency of the caches in all our experiments and all simulations. We
still need to conduct a proof of the program correctness of our simulator using acceptable,
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scientific, standard proof-of-program correctness methodologies. All the simulations never
ended up in an inconsistent state, which is a significant leap towards the optimization of the
cache simulator. We therefore have the following recommendations for the improvements of
the cache simulator.

RECOMMENDATIONS

The performance graphs showed that there is no significant performance 4

this is wrong and one of the reasons is that there might be a programming err
bookkeeping of the memory writes through the traces used or in the cache

revise the configurations of the trace files. The Valid-Invalid protocol
protocol when random trace files were used which is a point of

future area of research and improving the cache perft
optimizations schemes and also record the data for
m complexity of the cache
simulator. Concurrency has been a majo during the execution of the
simulator. When we implemented the Sys
allow us to start the simulator with two or We have actually resolved this error
K= “DISABLED” at the start of each
simulation involving more thapd® ut we recommend that we have to create an
environment variable that alld it palilelism to occur during the simulation.

We also recomme ange of cache coherency protocols rather than
choosing only one type, . As SystemC can be implemented in the multi-platform
e characteristics of the hardware being simulated, we
yfferent multiprocessor environments. However this has been a

rch is useful in multiprocessor design.
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