Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILNS > Volume 73 > Licorice Root Extract Boosts Capsicum annuum L....
< Back to Volume

Licorice Root Extract Boosts Capsicum annuum L. Production and Reduces Fruit Contamination on a Heavy Metals-Contaminated Saline Soil

Full Text PDF

Abstract:

Natural supplementations are used in agriculture nowadays not only for improving plant performance but also for reducing the contamination of plant edible parts. Two field trials were conducted to study the potential effects of licorice root extract (LRE; 0.5%) on performance, physio-biochemical components, antioxidant defense system, and contaminants concentrations of Capsicum annuum L. plants grown on a saline soil contaminated with heavy metals. LRE was applied in single (i.e., as rhizosphere application with drip irrigation water; -RA or as foliar spray; -FA) or in integration (i.e., LRE-RA + LRE-FA) treatment. The results showed that both single or integrative treatments significantly increased plant growth and yield, leaf concentrations of photosynthetic pigments, free proline, total soluble sugars, N, P, and K+, ratio of K+/Na+, and activities of CAT, POX, APX, SOD and GR, while significantly reduced contaminants; Na+, Cd, Cu, Pb and Ni concentrations in plant leaves and fruits on heavy metals-contaminated saline soil compared to the control (without LRE). Additionally, the integrative LRE-RA + LRE-FA treatment significantly exceeded both single treatments in this concern, which had been recommended for maximizing pepper plant performances with minimizing heavy metals in fruits on contaminated saline soils.

Info:

Periodical:
International Letters of Natural Sciences (Volume 73)
Pages:
1-16
Citation:
E. S. M. Desoky et al., "Licorice Root Extract Boosts Capsicum annuum L. Production and Reduces Fruit Contamination on a Heavy Metals-Contaminated Saline Soil", International Letters of Natural Sciences, Vol. 73, pp. 1-16, 2019
Online since:
January 2019
Export:
Distribution:
References:

[1] T.A. Abd El-Mageed, W.M. Semida, M.M. Rady, Moringa leaf extract as biostimulant improves water use efficiency, physio-biochemical attributes of squash plants under deficit irrigation, Agric. Water Manag. 193 (2017) 46–54.

DOI: https://doi.org/10.1016/j.agwat.2017.08.004

[2] Y. Alireza et al., Effect of micronutrients foliar application on grain qualitative characteristics and some physiological traits of bean (Phaseolus vulgaris L.) under drought stress, Indian J. Fund. Appl. Life Sci. 4(4) (2014) 124‒131.

[3] M. Anayat et al., Role of Cd and Hg on biochemical contents of fennel and its reduction by exogenous treatment of nitrogen, Int. J. Sci. Res. Publ. 4(3) (2014) 1–6.

[4] S.A. Anjum et al., Antioxidant defense system and proline accumulation enables hot pepper to perform better under drought, Sci. Hortic. 140 (2012) 66–73.

DOI: https://doi.org/10.1016/j.scienta.2012.03.028

[5] K. Apel, H. Hirt, Reactive oxygen species: metabolism oxidative stress and signal transduction, Annu. Rev. Plant Biol. 55 (2004) 373–399.

DOI: https://doi.org/10.1146/annurev.arplant.55.031903.141701

[6] M. Babaeian et al., Effects of foliar micronutrient application on osmotic adjustments, grain yield and yield components in sunflower (Alstar cultivar) under water stress at three stages, Afr. J. Agric. Res. 6(5) (2011) 1204‒1208.

[7] N.R. Baker, Chlorophyll fluorescence: a probe of photosynthesis in vivo, Annu. Rev. Plant Biol. 59 (2008) 89–113.

DOI: https://doi.org/10.1146/annurev.arplant.59.032607.092759

[8] A. Bargaz et al., Improved salinity tolerance by phosphorus fertilizer in two Phaseolus vulgaris recombinant inbred lines contrasting in their P-efficiency, J. Agron. Crop Sci. 202(6) (2016) 497–507.

DOI: https://doi.org/10.1111/jac.12181

[9] L.S. Bates, R.P. Waldren, I.D. Teare, Rapid determination of free proline for water stress studies, Plant Soil. 39 (1973) 205‒207.

DOI: https://doi.org/10.1007/bf00018060

[10] A.M. Bhaduri, M.H. Fulekar, Antioxidant enzyme responses of plants to heavy metal stress, Rev. Environ. Sci. Biotechnol. 11 (2012) 55–69.

DOI: https://doi.org/10.1007/s11157-011-9251-x

[11] C.A. Black, Soil plant relationships, 2nd Ed., John Wiley and Sons, NY, USA, (1968).

[12] B. Chance, A.C. Maehly, Assay of catalase and peroxidase, Methods Enzymol. 2 (1955) 764‒775.

[13] K.R. Chandrasekhar, S. Sandhyarani, Salinity induced chemical changes in Crotalaria striata DC plants, Indian J. Plant Physiol. 1 (1996) 44–48.

[14] H.D. Chapman, F.P. Pratt, Determination of Minerals by Titration Method: Methods of Analysis for Soils, Plants, and Water. 2nd Ed., Agriculture Division, Calif. Univ., USA, 1982, p.169–170.

[15] J. Cheeseman, Hydrogen peroxide and plant stress: a challenging relationship, Plant Stress 1 (2007) 4–15.

[16] G.U. Chibuike, S.C. Obiora, Heavy metal polluted soils: effect on plants and bioremediation methods – a review, Appl. Environ. Soil Sci. 2014 (2014) Article ID 752708.

DOI: https://doi.org/10.1155/2014/752708

[17] C. Cobbett, P. Goldsbrough, Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis, Annu. Rev. Plant Biol. 53 (2002) 159–182.

DOI: https://doi.org/10.1146/annurev.arplant.53.100301.135154

[18] W.C. Dahnke, D.A. Whitney, Measurement of soil salinity, in: W.C. Dahnke (Ed.), Recommended Chemical Soil Test Procedures for the North Central Region, 499. North Central Regional Publication 221, North Dakota Agric. Exp. St. Bull., 1988, p.32–34.

[19] E. De Pascale et al., Physiological responses of pepper to salinity and drought, J. Am. Soc. Hortic. Sci. 128 (2003) 48–54.

[20] E.M. Desoky, A.M. Merwad, M.M. Rady, Natural biostimulants improve saline soil characteristics and salt stressed-sorghum performance, Commun. Soil Sci. Plant Anal. 49(8) (2018) 967‒983.

DOI: https://doi.org/10.1080/00103624.2018.1448861

[21] R.S. Dubey, Photosynthesis in plants under stressful conditions, in: M. Pessarakli (Ed.), Handbook of Photosynthesis, Second ed. CRC Press, New York, 2005, p.717–718.

[22] N. Elham, P. Alireza, Z. Hossein, Influences of ascorbic acid and gibberellin on alleviation of salt stress in summer savory (Satureja hortensis L.), Int. J. Biosci. 5(4) (2014) 245‒255.

DOI: https://doi.org/10.12692/ijb/5.4.245-255

[23] A.S. Elrys, A.M.A. Merwad, Effect of alternative spraying with silicate and licorice root extract on yield and nutrients uptake by pea plants, Egypt. J. Agron. 39(3) (2017) 279‒292.

DOI: https://doi.org/10.21608/agro.2017.1429.1071

[24] E. Epstein, A.J. Bloom, Mineral Nutrition of Plants, Principles and Perspectives, 2nd Ed., Sunderland, MA. Sinauer Associates, 2005. ISBN 97808 78931 729.

[25] A.A. Fadeels, Location and properties of chloroplasts and pigment determination in roots, Physiol. Plant. 15 (1962) 130‒147.

[26] M. Falkowska et al., The Effect of gibberellic acid (GA3) on growth, metal biosorption and metabolism of the green algae Chlorella vulgaris (Chlorophyceae) beijerinck exposed to cadmium and lead stress, Polish J. Environ. Stud. 20(1) (2011) 53–59.

[27] A. Fargasová, Effect of Pb, Cd, Hg, As, and Cr on germination and root growth of Sinapis alba seeds, Bull. Environ. Contam. Toxicol. 52 (1994) 452–456.

DOI: https://doi.org/10.1007/bf00197836

[28] J.L. Fielding, J.L. Hall, A biochemical and cytochemical study of peroxidase activity in roots of Pisum sativum, J. Exp. Bot. 29 (1978) 969‒981.

DOI: https://doi.org/10.1093/jxb/29.4.969

[29] C.H. Foyer, G. Noctor, Redox regulation in photosynthetic organisms: signaling: acclimation and practical implications, Trends Plant Sci. 6 (2009) 486–492.

DOI: https://doi.org/10.1089/ars.2008.2177

[30] C. Garbisu et al., Phytoremediation: A technology using green plants to remove contaminants from polluted areas, Rev. Environ. Health. 17 (2002) 75–90.

DOI: https://doi.org/10.1515/reveh.2002.17.3.173

[31] S.R. Grattan, C.M. Grieve, Mineral nutrient acquisition and response of plants grown in saline environments, in: M. Pessarakli (Ed.), Handbook of Plant and Crop Stress. Marcel Dekker Press Inc., New York, 1999, p.203‒229.

DOI: https://doi.org/10.1201/9780824746728.ch9

[32] S. Gul et al., Interactive effects of salinity and heavy metal stress on ecophysiological responses of two maize (Zea Mays L.) cultivars, FUUAST J. Biol. 6(1) (2016) 81–87.

[33] D.K. Gupta et al., Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress, J. Hazard. Mater. 172 (2009) 479–484.

DOI: https://doi.org/10.1016/j.jhazmat.2009.06.141

[34] B. Halliwell, M.J.C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, London, (2007).

[35] H.A. Hartung, Potassium-magnesium-calcium glycyrrhizin, United States Patent 4, 176, 228, (1979).

[36] H. Hayashi et al., Murata transformation of Arabidopsis thaliana with the coda gene for choline oxidase: accumulation of glycine betaine and enhanced tolerance to salt and cold stress, Plant J. 12 (1997) 133–142.

DOI: https://doi.org/10.1046/j.1365-313x.1997.12010133.x

[37] K. Hebers, V. Sonnewald, Altered gene expression: brought about by inter and pathogen interactions, J. Plant Res. 111 (1998) 323–328.

[38] D.M. Hodges et al., Antioxidant enzyme responses to chilling stress in differentially sensitive inbred maize lines, J. Exp. Bot. 48(5) (1997) 1105–1113.

DOI: https://doi.org/10.1093/jxb/48.5.1105

[39] L.R. Howard et al., Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum spp.) as influenced by maturity, J. Agric. Food Chem. 48 (2000) 1713–1720.

DOI: https://doi.org/10.1021/jf990916t

[40] S.M. Howladar, A novel Moringa oleifera leaf extract can mitigate the stress effects of salinity and cadmium in bean (Phaseolus vulgaris L.) plants, Ecotoxicol. Environ. Saf. 100 (2014) 69–75.

DOI: https://doi.org/10.1016/j.ecoenv.2013.11.022

[41] J.J. Irigoyen, D.W. Emerich, M. Sanchez-Diaz, Water stress induced changes in the concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants, Plant Physiol. 8 (1992) 455–460.

DOI: https://doi.org/10.1034/j.1399-3054.1992.840109.x

[42] M.L. Jackson, Soil Chemical Analysis. Prentice Hall, Ic., Englewood Califfs, New Jersy, (1973).

[43] A. Kadkhodaie, S. Kelich, A. Baghbani, Effects of salinity levels on heavy metals (Cd, Pb and Ni) absorption by sunflower and sudangrass plants, Bull. Environ. Pharmacol. Life Sci. 1(12) (2012) 47–53.

[44] M.H. Kalaji, S. Pietkiewicz, Salinity effect in plant growth and other physiological process, Acta Physiol. Plant. 15 (1993) 89-124.

[45] D. Kaydan, M.Y. Okut, Effects of salicylic acid on the growth and some physiological characters in salt-stressed wheat (Triticum aestivum L.), Tarim Bİlimleri Dergisi 13(2) (2007) 114–119.

DOI: https://doi.org/10.1501/tarimbil_0000000444

[46] L. Kong, M. Wang, D. Bi, Selenium modulates the activities of antioxidant enzymes, osmotic homeostasis and promotes the growth of sorrel seedlings under salt stress, Plant Growth Regul. 45 (2005) 155‒163.

DOI: https://doi.org/10.1007/s10725-005-1893-7

[47] J. Kováčika, S. Dresler, Calcium availability but not its content modulates metal toxicity in Scenedesmus quadricauda, Ecotoxicol. Environ. Saf. 147 (2018) 664–669.

DOI: https://doi.org/10.1016/j.ecoenv.2017.09.022

[48] M. Lachica, A. Aguilar, J. Yanez, Analysis foliar. Métodos utilizados en la Estacion Experimental del Zaidin, An. Edafol. Agrobiol. 32 (1973) 1033‒1047.

[49] W. Li et al., Roles of gibberellins and abscisic acid in regulating germination of Suaeda salsa dimorphic seeds under salt stress, Front. Plant Sci. 6 (2016) 1235.

DOI: https://doi.org/10.3389/fpls.2015.01235

[50] E.V. Maas, G.J. Hoffman, Crop Salt Tolerance ‒ Current Assessment, J. Irrig. Drain. Div., Am. Soc. Civ. Eng. 103 (1977) 115–134.

[51] W. Maksymiec, Signaling responses in plants to heavy metal stress, Acta Physiol. Plant. 29 (2007) 177–187.

DOI: https://doi.org/10.1007/s11738-007-0036-3

[52] D.A. Meloni, C.A. Martınez, Glycinebetaine improves salt tolerance in vinal (Prosopis ruscifolia Griesbach) seedlings, Braz. J. Plant Physiol. 21 (2009) 233–241.

DOI: https://doi.org/10.1590/s1677-04202009000300007

[53] C.A. Newall, L.A. Anderson, J.D. Phillipson, Herbal Medicines. First Published. The Pharmaceutical Press, London, (1996).

[54] G. Noctor et al., Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling, J. Exp. Bot. 53 (2002) 1283–1304.

DOI: https://doi.org/10.1093/jexbot/53.372.1283

[55] M.I. Nossier, M. Gawish, M.T.A. Taha, Response of wheat plants to application of selenium and humic acid under salt stress conditions, Egypt. J. Soil Sci. 57(2) (2017) 175–187.

DOI: https://doi.org/10.21608/ejss.2017.3715

[56] M.M. Rady, G.F. Mohamed, Modulation of salt stress effects on the growth, physio-chemical attributes and yields of Phaseolus vulgaris L. plants by the combined application of salicylic acid and Moringa oleifera leaf extract, Sci. Hortic. 193 (2015) 105–113.

DOI: https://doi.org/10.1016/j.scienta.2015.07.003

[57] M.M. Rady, S.S. Taha, S. Kusvuran, Integrative application of cyanobacteria and antioxidants improves common bean performance under saline conditions, Sci. Hortic. 233 (2018) 61–69.

DOI: https://doi.org/10.1016/j.scienta.2018.01.047

[58] M.M. Rady, B.C. Varma, S.M. Howladar, Common bean (Phaseolus vulgaris L.) seedlings overcome NaCl stress as a result of presoaking in Moringa oleifera leaf extract, Sci. Hortic. 162 (2013) 63‒70.

DOI: https://doi.org/10.1016/j.scienta.2013.07.046

[59] M.V. Rao, G. Paliyath, D.P. Ormrod, Ultraviolet-B radiation and ozone-induced biochemical changes in the antioxidant enzymes of Arabidopsis thaliana, Plant Physiol. 110 (1996) 125–136.

DOI: https://doi.org/10.1104/pp.110.1.125

[60] H. Rehman et al., Magnesium and organic biostimulant integrative application induces physiological and biochemical changes in sunflower plants and its harvested progeny on sandy soil, Plant Physiol. Biochem. 126 (2018) 97–105.

DOI: https://doi.org/10.1016/j.plaphy.2018.02.031

[61] R.K. Sairam, K.V. Rao, G.C. Srivastava, Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration, Plant Sci. 163 (2002) 1037-1046.

DOI: https://doi.org/10.1016/s0168-9452(02)00278-9

[62] A. Schutzendubel, A. Polle, Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization, J. Exp. Bot. 53 (2002) 1351–1365.

DOI: https://doi.org/10.1093/jexbot/53.372.1351

[63] W.M. Semida, M.M. Rady, Presoaking application of propolis and maize grain extracts alleviates salinity stress in common bean (Phaseolus vulgaris L.), Sci. Hortic. 68 (2014) 210–217.

DOI: https://doi.org/10.1016/j.scienta.2014.01.042

[64] S. Sevengör et al., The effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidative enzymes of pumpkin seedling, Afr. J. Agric. Res. 6(21) (2011) 4920–4924.

[65] S. Shabala, L.J. Schimanski, A. Koutoulis, Heterogeneity in bean leaf mesophyll tissue and ion flux profiles: leaf electrophysiological characteristics correlate with the anatomical structure, Ann. Bot. 89 (2003) 221–226.

DOI: https://doi.org/10.1093/aob/mcf029

[66] Sh.M. Thanaa et al., Response of nonpareil seedlings almond to foliar application of licorice root extract and bread yeast suspend under south Sinai conditions, J. Innov. Pharm. Biol. Sci. 3 (2016) 123–132.

[67] H. Thomas, C.J. Howarth, Five ways to stay green, J. Exp. Bot. 51 (2000) 329–337.

[68] R.L. Thomas, J.J. Jen, C.V. Morr, Changes in soluble and bound peroxidase-IAA oxidase during tomato fruit development, J. Food Sci. 47 (1982) 158‒161.

DOI: https://doi.org/10.1111/j.1365-2621.1982.tb11048.x

[69] S. Trapp et al., Plant uptake of NaCl in relation to enzyme kinetics and toxic effects, Environ. Exp. Bot. 64 (2008) 1–7.

[70] F. Van Assche, H. Clijsters, Effects of heavy metals on enzyme activity in plants, Plant Cell Environ. 13 (1990) 195–206.

DOI: https://doi.org/10.1111/j.1365-3040.1990.tb01304.x

[71] A.P. Vitoria, P.J. Lea, R.A. Azevado, Antioxidant enzymes responses to cadmium in radish tissues, Phytochem. 57 (2001) 701‒710.

DOI: https://doi.org/10.1016/s0031-9422(01)00130-3

[72] Yu.N. Vodyanitskii, Standards for the contents of heavy metals in soils of some states, Ann. Agr. Sci. 14(3) (2016) 257–263.

[73] F.S. Watanabe, S.R. Olsen, Test of ascorbic acid method for determine phosphorus in water and NaHCO3 extracts from soil, Soil Sci. Soc. Amer. Proc. 29 (1965) 677–678.

DOI: https://doi.org/10.2136/sssaj1965.03615995002900060025x

[74] M. Wierzbicka, Resumption of mitotic activity in Allium cepa L. root tips during treatment with lead salts, Environ. Exp. Bot. 34 (1994) 173‒180.

DOI: https://doi.org/10.1016/0098-8472(94)90036-1

[75] B. Wolf, A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status, Commun. Soil Sci. Plant Anal. 13 (1982) 1035‒1059.

DOI: https://doi.org/10.1080/00103628209367332

[76] J. Xu, Q. Hu, Effect of foliar application of selenium on the antioxidant activity of aqueous and ethanolic extracts of selenium-enriched rice, J. Agric. Food Chem. 52 (2004) 1759‒1763.

DOI: https://doi.org/10.1021/jf0349836

[77] E. Yildirim, H. Karlidag, M. Turan, Mitigation of salt stress in strawberry by foliar K, Ca and Mg nutrient supply, Plant Soil Environ. 55(5) (2009) 213–221.

DOI: https://doi.org/10.17221/383-pse

[78] S.S. Zaki, M.M. Rady, Moringa oleifera leaf extract improves growth, physiochemical attributes, antioxidant defense system and yields of salt-stressed Phaseolus vulgaris L. plants, Int. J. Chem. Tech. Res. 8(11) (2015) 120‒134.

[79] B.A. Zayed, A.K.M. Salem, H.M. El-Sharkawy, Effect of different micronutrient treatments on rice (Oryza sativa L.) growth and yield under saline soil conditions, World J. Agric. Sci. 7 (2011) 179‒184.

[80] J-K. Zhu, Plant salt tolerance, Trends Plant Sci. 6 (2001) 66–71.

Show More Hide
Cited By:
This article has no citations.