Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILNS > ILNS Volume 71 > Melanophores inside Frogs
< Back to Volume

Melanophores inside Frogs

Full Text PDF

Abstract:

Melanocytes/melanophores were known for some decades as pigment cells in skin. The origin of these cells in embryogenesis from neural crest cells is actively investigated now. Some melanocytes/melanophores were described inside adult vertebrates. Historically, these internal melanocytes have been largely ignored, until recently. In frogs, the melanophores populate not only the skin, but all the inner connective tissues: epineurium, peritoneum, mesentery, outer vascular layer and skin underside. In adult avian, melanocytes were also found in visceral connective tissues, periostea, muscles, ovaries and the peritoneum. In mammals and humans, melanocytes are also revealed in eyes, ears, heart and brain. A black-brownish pigment, which can be found in brains of humans and some mammals, was called neuromelanin. Currently, attempts are being made to treat neurodegenerative diseases and various nerve injuries with medications containing melanin. In this micro-review, we wanted to remind again about the inner melanophores on visceral organs and lining blood vessels and nerves, their importance in organisms resistance to adverse environmental factors.

Info:

Periodical:
International Letters of Natural Sciences (Volume 71)
Pages:
1-9
Citation:
E. S. Pshennikova and A. S. Voronina, "Melanophores inside Frogs", International Letters of Natural Sciences, Vol. 71, pp. 1-9, 2018
Online since:
September 2018
Export:
Distribution:
References:

[1] I.F. Videira, D.F. Moura, S. Magina, Mechanisms regulating melanogenesis, An. Bras. Dermatol. 88(1) (2013) 76–83.

DOI: https://doi.org/10.1590/s0365-05962013000100009

[2] E.N. Nikeriasova, V.A. Golichenkov, Dynamics of the redistribution of pigmented granules in the dermal melanophores of anuran larvae. 2. Aggregation, Ontogenez. 19(6) (1988) 618–625.

[3] E.S. Kirpichnikova, L.B. Levinson, The workshop on General histology: textbook, Graduate school, Moscow, USSR, 1962, pp.64-65. (in Russian).

[4] J.M. Newbern, Molecular control of the neural crest and peripheral nervous system development, Curr. Top. Dev. Biol. 111 (2015) 201–231.

[5] A.J. Thomas, C.A. Erickson, The making of a melanocyte: the specification of melanoblasts from the neural crest, Pigment Cell Melanoma Res. 21(6) (2008) 598–610.

DOI: https://doi.org/10.1111/j.1755-148x.2008.00506.x

[6] C.D. Faraco et al., Hyperpigmentation in the silkie fowl correlates with abnormal migration of fate-restricted melanoblasts and loss of environmental barrier molecules, Dev. Dyn. 220 (2001) 212–225.

DOI: https://doi.org/10.1002/1097-0177(20010301)220:3<212::aid-dvdy1105>3.0.co;2-9

[7] A.P. Singh, et al., Pigment cell progenitors in zebrafish remain multipotent through metamorphosis, Developmental Cell. 38(3) (2016) 1–15.

[8] I. Adameyko, et al., Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin, Cell. 139(2) (2009) 366–379.

DOI: https://doi.org/10.1016/j.cell.2009.07.049

[9] I. Adameyko, F. Lallemend, Glial versus melanocyte cell fate choice: Schwann cell precursors as a cellular origin of melanocytes, Cell. Mol. Life Sci. 67(18) (2010) 3037–3055.

DOI: https://doi.org/10.1007/s00018-010-0390-y

[10] C.D. Van Raamsdonk, M. Deo, Links between Schwann cells and melanocytes in development and disease, Pigment Cell and Melanoma Research. 26(5) (2013) 634–645.

DOI: https://doi.org/10.1111/pcmr.12134

[11] M.E. Kastriti, I.Adameyko, Specification, plasticity and evolutionary origin of peripheral glial cells, Current Opinion in Neurobiology. 47 (2017) 196–202.

DOI: https://doi.org/10.1016/j.conb.2017.11.004

[12] J. Petersen, I. Adameyko, Nerve-associated neural crest: peripheral glial cells generate multiple fates in the body, Current Opinion in Genetics & Development. 45 (2017) 10–14.

DOI: https://doi.org/10.1016/j.gde.2017.02.006

[13] A. Furlan, I. Adameyko, Schwann cell precursor: a neural crest cell in disguise? Dev Biol. (2018). In press. Doi: https://doi.org/10.1016/j.ydbio.2018.02.008.

DOI: https://doi.org/10.1016/j.ydbio.2018.02.008

[14] E.O. Zagal'skaia, The vascular melanocytes of the pia mater and mesentery of the small intestine in the frog: structure and functions, Tsitologiia. 36(8) (1994) 796–801.

[15] L. Franco-Belussi, et al, Pigmentation in anuran testes: anatomical pattern and variation, The Anatomical Record. 292 (2009) 178–182.

DOI: https://doi.org/10.1002/ar.20832

[16] L. Franco-Belussi, et al, Visceral Pigmentation in Three Species of the Genus Scinax (Anura: Hylidae): Distinct Morphological Pattern, The Anatomical Record. 295 (2012) 298–306.

DOI: https://doi.org/10.1002/ar.21524

[17] L. Franco-Belussi, H. Nilsson Skold, C. de Oliveira, Internal pigment cells respond to external UV radiation in frogs, J. Exp. Biol. 219(Pt 9) (2016) 1378–1383.

DOI: https://doi.org/10.1242/jeb.134973

[18] L. Franco-Belussi, D.B. Provete, C. de Oliveira, Environmental correlates of internal coloration in frogs vary throughout space and lineages, Ecol. Evol. 7(22) (2017) 9222-9233.

DOI: https://doi.org/10.1101/105684

[19] L. Franco-Belussi, L.Z. Fanali, C. de Oliveira, UV-B affects the immune system and promotes nuclear abnormalities in pigmented and non-pigmented bullfrog tadpoles, J. Photochem. Photobiol B. 180 (2018) 109-117.

DOI: https://doi.org/10.1016/j.jphotobiol.2018.01.022

[20] H. Nilsson Skold, P.A. Svensson, C. Zejlon, The capacity for internal colour change is related to body transparency in fishes, Pigment Cell and Melanoma Research. 23(2) (2010) 292–295.

DOI: https://doi.org/10.1111/j.1755-148x.2010.00674.x

[21] S. R. Muroya, I.T. Nakajima, K. Chikuni, Molecular characteristics and site specific distribution of the pigment of the silky fowl, J. Vet. Med. Sci. 62 (2000) 391–395.

DOI: https://doi.org/10.1292/jvms.62.391

[22] S. R. Chen et al, Isolation and characterization of natural melanin derived from silky fowl (Gallus gallus domesticus Brisson), Food Chem. 111 (2008) 745–749.

DOI: https://doi.org/10.1016/j.foodchem.2008.04.053

[23] J. Wang et al, Accumulation of melanin in the peritoneum causes black abdomens in broilers, Poult. Sci. 93(3) (2014) 742–746.

DOI: https://doi.org/10.3382/ps.2013-03433

[24] F.C. Brito, L. Kos, Timeline and distribution of melanocyte precursors in the mouse heart, Pigment Cell and Melanoma Research. 21 (2008) 464–470.

DOI: https://doi.org/10.1111/j.1755-148x.2008.00459.x

[25] M.H. Goldgeier et al, The Distribution of Melanocytes in the Leptomeninges of the Human Brain, J. Investigative Dermatology. 82(3) (1984) 235–238.

[26] M. Bazelon, G.M. Fenichel, J. Randall, Studies on neuromelanin. I. A melanin system in the human adult brainstem, Neurology.  17(5) (1967) 512–519.

DOI: https://doi.org/10.1212/wnl.17.5.512

[27] H. Fedorow et al, Neuromelanin in human dopamine neurons: comparison with peripheral melanins and relevance to Parkinson's disease, Prog. Neurobiol. 75 (2005) 109–124.

[28] G.M. Fenichel, M. Bazelon, Studies on neuromelanin. 2. Melanin in brainstems of infants and сhildren, Neurology. 18 (1968) 817–820.

DOI: https://doi.org/10.1212/wnl.18.8.817

[29] S. Plum et al, Combined enrichment of neuromelanin granules and synaptosomes from human substantia nigra pars compacta tissue for proteomic analysis, J. Proteomics. 94 (2013) 202–206.

DOI: https://doi.org/10.1016/j.jprot.2013.07.015

[30] O.V. Gevorkyan et al, Bacterial melanin promotes recovery after sciatic nerve injury in rats, Neural Regeneration Research. 10(1) (2015) 124–127.

DOI: https://doi.org/10.4103/1673-5374.150719

[31] S.Aspengren et al, New insights into melanosome transport in vertebrate pigment cells, Int. Rev. Cell. Mol. Biol. 272 (2009) 245–302.

[32] H. Z. Hill, The function of melanin or six blind people examining an elephant, Bioessays. 14 (2000) 49–56.

DOI: https://doi.org/10.1002/bies.950140111

[33] S. Ito, Melanins seem to be everywhere in the body, but for what? Pigment Cell and Melanoma Research. 22(1) (2009) 12–13.

DOI: https://doi.org/10.1111/j.1755-148x.2008.00538.x

[34] A. Slominski, R. Paus, D. Schadendorf, Melanocytes as sensory, and regulatory cells in the epidermis, J. Theor. Biol. 164(1) (1993) 103-120.

DOI: https://doi.org/10.1006/jtbi.1993.1142

[35] M. Hara et al, Innervation of melanocytes in human skin, J. Exp. Med. 184 (1996) 1385–1395.

Show More Hide
Cited By:

[1] A. da Costa Araújo, N. de Melo, A. de Oliveira Junior, F. Rodrigues, T. Fernandes, J. de Andrade Vieira, T. Rocha, G. Malafaia, "How much are microplastics harmful to the health of amphibians? a study with pristine polyethylene microplastics and Physalaemus cuvieri", Journal of Hazardous Materials, p. 121066, 2019

DOI: https://doi.org/10.1016/j.jhazmat.2019.121066

[2] A. Roy, M. Pittman, E. Saitta, T. Kaye, X. Xu, "Recent advances in amniote palaeocolour reconstruction and a framework for future research", Biological Reviews, 2019

DOI: https://doi.org/10.1111/brv.12552