Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILNS > Volume 61 > REP-PCR Analysis to Study Prokaryotic Biodiversity...
< Back to Volume

REP-PCR Analysis to Study Prokaryotic Biodiversity from Lake Meyghan

Full Text PDF

Abstract:

Repetitive extragenic palindromic elements-polymerase chain reaction (rep-PCR) with 16S ribosomal ribonucleic acid (16S rRNA) genes sequences successfully used for the analysis of microbial community. In this study, the prokaryotic community in Lake Meyghan described by using rep-PCR analysis along with 16S rRNA gene sequencing. The water samples were collected from Lake Meyghan in November 2013. All samples were diluted and cultured on three different media. To estimate the number of prokaryotes per milliliter of the lake we used quantitative real‑time PCR (qPCR). Rep-PCR combination with 16S rRNA gene sequencing was performed to investigate prokaryotes biodiversity in the lake. 305 strains were isolated in this work; 113 isolates for green region, 102 isolates for red region, and 90 isolates for white region. The dendrograms generated 10, 7, and 9 clusters for a 70 % similarity cut-off for green, red, and white regions, respectively. Based on rep-PCR and 16S rRNA gene sequencing, the recovered isolates were dominated by (77.5 %) Halobacteriacae and many isolates were related to the genera Halorubrum, Haloarcula, Haloterrigena, Natrinema, and Halovivax in the white region. In the red region more isolated strains (57.5 %) belonged to Bacillaceae and the remaining 42.5 % of isolates belonged to archaea domain, Halorubrum, and Haloarcula. In the green region members of Gammaproteobacteria were recoverd, this region was dominant with Pseudoalteromonas, Salinivibrio, and Aliidiomarina.

Info:

Periodical:
International Letters of Natural Sciences (Volume 61)
Pages:
69-84
Citation:
A. Naghoni et al., "REP-PCR Analysis to Study Prokaryotic Biodiversity from Lake Meyghan", International Letters of Natural Sciences, Vol. 61, pp. 69-84, 2017
Online since:
Jan 2017
Export:
Distribution:
References:

[1] N.G. Hariston et al., The relationship between species diversity and stability: an experimental approach with protozoa and bacteria, Ecology. 49(6) (1968) 1091–1101.

[2] M.J. Swift, Species diversity and the structure of microbial communities in terrestrial habitats, in: J.M. Anderson, A. McFadyen (Eds. ), The role of terrestrial and aquatic organisms in decomposition processes, Blackwell Scientific Publication, United Kingdom, 1974, p.185.

[3] B.K. Singh et al., Soil genomics, Nature Rev. Microbiol. 7(10) (2009) 756–757.

[4] M.C. Horner-Devine, M.K. Carney, B.J.M. Bohannan, An ecological perspective on bacterial biodiversity, Proc. Biol. Sci. 271(1535) (2003) 113–122.

[5] F. Rodríguez-Valera et al., Variation of environmental features and microbial populations with salt concentrations in a multi-pond saltern, Microb. Ecol. 11(2) (1985) 107–115.

DOI: https://doi.org/10.1007/bf02010483

[6] A. Oren, Molecular ecology of extremely halophilic Archaea and Bacteria, FEMS Microbiol. Ecol. 39(1) (2002) 1–7.

[7] C. Pedrós-Alió et al., The microbial food web along salinity gradients, FEMS Microbiol. Ecol. 32(2) (2000) 143–155.

DOI: https://doi.org/10.1016/s0168-6496(00)00025-8

[8] E.O. Casamayor, J.I. Calderón-Paz, C. Pedrós-Alió, 5S rRNA fingerprints of marine bacteria, halophilic archaea and natural prokaryotic assemblages along a salinity gradient, FEMS Microbiol. Ecol. 34(2) (2000) 113–119.

DOI: https://doi.org/10.1111/j.1574-6941.2000.tb00760.x

[9] F. Rodríguez-Valera, F. Ruiz-Berraquero, A. Ramos-Cormenzana, Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations, Microb. Ecol. 7(3) (1981) 235–243.

DOI: https://doi.org/10.1007/bf02010306

[10] C. Lizama et al., Taxonomic study of extreme halophilic archaea isolated from the 'Salar de Atacama', Chile, Syst. Appl. Microbiol. 24(3) (2001) 464–474.

[11] C. Lizama et al., Halorubrum tebenquichense sp nov., a novel halohilic archaeon isolated from the Atacama Saltern, Chile, Int. J. Syst. Evol. Microbiol. 52 (2002) 149–155.

DOI: https://doi.org/10.1099/00207713-52-1-149

[12] J. Antón et al., Salinibacter ruber gen. nov., sp. nov., a new species of extremely halophilic Bacteria from saltern crystallizer ponds, Int. J. Syst. Evol. Microbiol. 52 (2002) 485–491.

DOI: https://doi.org/10.1099/00207713-52-2-485

[13] R.M. Bond, Investigations of some Hispaniolan lakes. II. Hydrology and Hydrography, Arch. Hydrobiol. 28 (1935) 144–161.

[14] A. Ventosa, Unusual micro-organisms from unusual habitats: hypersaline environments, in: N.A. Logan, H.M. Lappin-Scott, P.C.F. Oyston (Eds. ), Prokaryotic Diversity: Mechanism and Significance, Cambridge University Press, United Kingdom, 2006, p.223.

DOI: https://doi.org/10.1017/cbo9780511754913.015

[15] A.B. Fernández et al., Comparison of prokaryotic community structure from Mediterranean and Atlantic saltern concentrator ponds by a metagenomic approach, Front. Microbiol. 5 (2014) 196.

[16] N.H. Youssef, K.N. Ashlock-Savage, M.S. Elshahed, Phylogenetic diversities and community structure of members of the extremely halophilic Archaea (Order Halobacteriales) in multiple saline sediment habitats, Appl. Environ. Microbiol. 78 (2012).

DOI: https://doi.org/10.1128/aem.07420-11

[17] M. Birbir et al., Extremely halophilic Archaea from Tuz Lake, Turkey, and the adjacent Kaldirim and Kayacik salterns, World J. Microbiol. Biotechnol. 23(3) (2007) 309–316.

DOI: https://doi.org/10.1007/s11274-006-9223-4

[18] H. Jiang et al., Microbial diversity in water and sediment of Lake Chaka, an athalassohaline lake in northwestern China, Appl. Environ. Microbiol. 72(6) (2006) 3832–3845.

DOI: https://doi.org/10.1128/aem.02869-05

[19] L. Maturrano et al., Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes, Appl. Environ. Microbiol. 72(6) (2006) 3887–3895.

DOI: https://doi.org/10.1128/aem.02214-05

[20] S. Benlloch et al., Archaeal biodiversity in crystallizer ponds from a solar saltern: culture versus PCR, Microb. Ecol. 41(1) (2001) 12–19.

[21] C.D. Litchfield, P.M. Gillevet, Microbial diversity and complexity in hypersaline environments: a preliminary assessment, J. Ind. Microbiol. Biotechnol. 28(1) (2002) 48–55.

[22] C.W. Lin et al., Comparison of pulsed-field gel electrophoresis and three rep-PCR methods for evaluating the genetic relatedness of Stenotrophomonas maltophilia isolates, Lett. Appl. Microbiol. 47(5) (2008) 393–398.

[23] L.G. Dos Anjos Borges, V. Dalla Vechia, G. Corção, Characterisation and genetic diversity via REP-PCR of Escherichia coli isolates from polluted waters in southern Brazil, FEMS Microbiol. Ecol. 45(2) (2003) 173–180.

[24] J.V. Versalovic, F.J. de Bruijn, J.R. Lupski, Repetitive sequence-based PCR (rep-PCR) DNA fingerprinting of bacterial genomes, in: F.J. de Bruijn, J.R. Lupski, G.M. Weinstock (Eds. ), Bacterial Genomes: Physical Structure and Analysis, Chapman & Hall, USA, 1998, p.437.

DOI: https://doi.org/10.1007/978-1-4615-6369-3_34

[25] T. Aanniz et al., Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils, Braz. J. Microbiol. 46(2) (2015) 443–453.

DOI: https://doi.org/10.1590/s1517-838246220140219

[26] M.M. Kathleen et al., (GTG)5-PCR analysis and 16S rRNA sequencing of bacteria from Sarawak aquaculture environment, International Food Research Journal. 21(3) (2014) 915–920.

[27] P. De Bellis et al., Biodegradation of Ochratoxin A by bacterial strains isolated from Vineyard soils, Toxins. 7(12) (2015) 5079–5093.

DOI: https://doi.org/10.3390/toxins7124864

[28] D.W. Ussery et al., Genome update: DNA repeats in bacterial genomes, Microbiology. 150 (2004) 3519–3521.

DOI: https://doi.org/10.1099/mic.0.27628-0

[29] S. Ishii, M.J. Sadowsky, Applications of the rep-PCR DNA fingerprinting technique to study microbial diversity, ecology and evolution, Environ. Microbiol. 11(4) (2009) 733–740.

DOI: https://doi.org/10.1111/j.1462-2920.2008.01856.x

[30] R. Tobes, J.L. Ramos, REP code: defining bacterial identity in extragenic space, Environ. Microbiol. 7(2) (2005) 225–228.

[31] M.J. Sadowsky, H.G. Hur, Use of endogenous repeated sequences to fingerprint bacterial genomic DNA, in: F.J. de Bruijn, J.R. Lupski, G.M. Weinstock (Eds. ), Bacterial Genomics: Physical Structure and Analysis editors, Chapman & Hall, USA, 1998, p.399.

[32] J. Versalovic, J.R. Lupski, Interspersed repetitive sequences in bacterial genomes, in: F.J. de Bruijn, J.R. Lupski, G.M. Weinstock (Eds. ), Bacterial Genomics: Physical Structure and Analysis editors, Chapman & Hall, USA, 1998. p.38–48.

DOI: https://doi.org/10.1007/978-1-4615-6369-3_5

[33] J.L.W. Rademaker et al., Characterization of the diversity of ecologically important microbes by rep-PCR genomic fingerprinting, in: G.A. Kowalchuck et al. (Eds. ), Molecular Microbial Ecology Manual, Springer, The Netherlands, 2008, p.611–644.

DOI: https://doi.org/10.1007/978-1-4020-2177-0_306

[34] H. Rahimpour-Bonab, L. Abdi, Sedimentology and origin of Meyghan lake/playa deposits in Sanandaj–Sirjan zone, Iran, Carbonates Evaporites. 27(3) (2012) 375–393.

[35] D.G. Burns et al., Combined use of cultivation-dependent and cultivation-independent methods indicates that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable, Appl. Environ. Microbiol. 70(9) (2004) 5258–5265.

DOI: https://doi.org/10.1128/aem.70.9.5258-5265.2004

[36] S. Benlloch et al., Description of prokaryotic biodiversity along the salinity gradient of a multipond solar saltern by direct PCR amplification of 16S Rdna, Hydrobiologia. 329(1) (1996) 19–31.

DOI: https://doi.org/10.1007/bf00034544

[37] N.M. Nathani et al., Comparative evaluation of rumen metagenome community using qPCR and MG-RAST, AMB Express. 3(1) (2013) 55.

DOI: https://doi.org/10.1186/2191-0855-3-55

[38] D.J. Lane, 16S/23S rRNA sequencing in: E. Stackebrandt, M. Goodfellow (Eds. ), Nucleic acid techniques in bacterial systematics, John Wiley and Sons, United Kingdom, 1991, p.115–175.

[39] S. Namwong et al., Isolation of Lentibacillus salicampi strains and Lentibacillus juripiscarius sp. nov. from fish sauce in Thailand, Int. J. Syst. Evol. Microbiol. 55 (2005) 315–320.

DOI: https://doi.org/10.1099/ijs.0.63272-0

[40] K.M. Ritalahti et al., Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains, Appl. Environ. Microbiol. 72(4) (2006) 2765–2774.

DOI: https://doi.org/10.1128/aem.72.4.2765-2774.2006

[41] G. Muyzer, E.C. de Waal, A.G. Uitterlinden, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S Rrna, Appl. Environ. Microbiol. 59(3) (1993).

[42] L. Ovreås et al., Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S Rrna, Appl. Environ. Microbiol. 63(9) (1997) 3367–3373.

[43] Y. Yu et al., Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction, Biotechnol. Bioeng. 89(6) (2005) 670–679.

[44] J. Versalovic, T. Koeuth, J.R. Lupski, Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 19(24) (1991) 6823–6831.

DOI: https://doi.org/10.1093/nar/19.24.6823

[45] K. Tamura et al., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol. 28(10) (2011) 2731–2739.

DOI: https://doi.org/10.1093/molbev/msr121

[46] A. Makhdoumi-Kakhki et al., Prokaryotic diversity in Aran-Bidgol Salt Lake, the largest hypersaline playa in Iran, Microbes Environ. 27(1) (2012) 87–93.

DOI: https://doi.org/10.1264/jsme2.me11267

[47] F. Jookar Kashi et al., Diversity of cultivable microorganisms in the eastern part of Urmia Salt Lake, Iran, J. Microbiol. Biotech. Food Sci. 4(1) (2014) 36–43.

DOI: https://doi.org/10.15414/jmbfs.2014.4.1.36-43

[48] M.B. Mutlu et al., Prokaryotic diversity in Tuz Lake, a hypersaline environment in Inland Turkey, FEMS Microbiol. Ecol. 65(3) (2008) 474–483.

DOI: https://doi.org/10.1111/j.1574-6941.2008.00510.x

[49] J. Antón et al., Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds, Environ. Microbiol. 1 (1999) 517-523.

DOI: https://doi.org/10.1046/j.1462-2920.1999.00065.x

[50] J. Antón et al., Extremely halophilic Bacteria in crystallizer ponds from solar salterns, Appl. Environ. Microbiol. 66 (2000) 3052-3057.

[51] M. Rasooli et al., Isolation, Identification and extracellular enzymatic activity of culturable extremely halophilic archaea and bacteria of IncheBoroun wetland, International Letters of Natural Sciences. 56 (2016) 40–51.

DOI: https://doi.org/10.18052/www.scipress.com/ilns.56.40

[52] X. Xu et al., Culturable halophilic archaeal diversity of Ayakekumu Salt Lake located in Xinjiang, China, Acta Ecologica Sinica. 27(8) (2007) 3119–3123.

[53] R. Elevi et al., Characterization of extremely halophilic Archaea isolated from the Ayvalik Saltern, Turkey, World Journal of Microbiology and Biotechnology. 20(7) (2004) 719–725.

DOI: https://doi.org/10.1007/s11274-004-4515-z

[54] D. Paul et al., Exploration of microbial diversity and community structure of Lonar Lake: The only hypersaline meteorite crater lake within basalt rock, Front. Microbiol. 6 (2015) 1553.

DOI: https://doi.org/10.3389/fmicb.2015.01553

[55] S. Benlloch et al., Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern, Environ. Microbiol. 4 (2002) 349–360.

Show More Hide