This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] L. Banos, Standard evaluation system for rice (SES), International Rice Research Institute, Philippines, 2002. (retrieved: June 25th, 2015).
[2] P.B. Tinker et al., Report of the fifth external programme and management review of International Rice Research Institute (IRRI), Brasilia: Food and Agriculture Organization of the United Nation, (1998).
[3] W.A.D. Jayawardana et al., Evaluation of DNA markers linked to blast resistant genes, pikh, pit(p), and pita, for parental selection in Sri Lankan rice breeding, Trop. Agric. Res. 26 (2014) 82-93.
DOI: https://doi.org/10.4038/tar.v26i1.8074[4] X. Wang et al., Current advances on genetic resistance to rice blast disease, Agric. Biol. Sci. (2014) 195-208.
[5] N.J. Talbot, Fungal genomics goes industrial, Nat. Biotech. 25 (2007) 542-543.
[6] B. Patra et al., Transcriptional regulation of secondary metabolite biosynthesis in plants, Bochim. Biophys. Acta. 1829(11) (2013) 1236-1247.
[7] R. Mittler, Oxidative stress, antioxidant and stress tolerance, Trends Plant Sci. 7 (2002) 405-410.
[8] K. Apel, H. Hirt, Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant Biol. 55 (2004) 373-399.
DOI: https://doi.org/10.1146/annurev.arplant.55.031903.141701[9] S. Mahajan, N. Tuteja, Cold, salinity and drought stresses: an overview, Arch. Biochem. Biophys. 444 (2005) 139-158.
[10] N. Tuteja, Chapter Twenty-Four - Mechanisms of high salinity tolerance in plants, Methods in Enzymology. 428 (2007) 419-438.
[11] N. Tuteja, Cold, salt and drought stress, in: H. Hirt (Ed. ), Plant Stress Biology: From Genomics towards System Biology, Wiley-Blackwell, Weinheim, Germany, 2010, pp.137-159.
[12] N.A. Khan, S. Singh, Abiotic stress and plant responses, I K Pub, New Delhi, (2008).
[13] S.S. Gill et al., Amelioration of cadmium stress in crop plants by nutrients management: Morphological, physiological and biochemical aspects, Plant Stress. 5(1) (2011) 1-23.
[14] R. Mittler et al., Reactive oxygen gene network of plants, Trends Plant Sci. 9 (2004) 490-498.
[15] M. Walter, E. Marchesan, Phenolic compounds and antioxidant activity of rice, Braz. Arch. Boil. Technol. 54 (2011) 371-377.
[16] A. Hyogo et al., Antioxidant effects of protocatechuic acid, ferulic acid, and caffeic acid in human neutrophils using a fluorescent substance, Int. J. Morphol. 28 (2010) 911-920.
[17] H. Ti et al., Free and bound phenolic profiles and antioxidant activity of milled fractions of different indica rice varieties cultivated in southern China, Food Chem. 159 (2014) 166–174.
[18] A. Djeridane et al., Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds, Food Chem. 97(4) (2006) 654–660.
[19] A.A. Elzaawely, T.D. Xuan, S. Tawata, Antioxidant and antibacterial activities of Rumex japonicus HOUTT. Aerial parts, Biol. Pharm. Bull. 28(12) (2005) 2225–2230.
[20] A. Yildirim, A. Mavi, A.A. Kara, Antioxidant and antimicrobial activities of Polygonum cognatum Meissn extracts, J. Sci. Food Agric. 83(1) (2003) 64-69.
[21] Z. Zhang et al., Antioxidant phenolic compounds from walnut kernels (Juglans regia L), Food Chem. 113 (2009) 160-165.
[22] T.D. Xuan et al., Correlation between growth inhibitory exhibition and suspected allelochemicals (phenolic compounds) in the extract of alfalfa (Medicago sativa L. ), Plant Prod. Sci. 6(3) (2003) 165–171.
[1] A. Almatwari, M. Hassandokht, F. Soltani, A. Mirzadi Gohari, M. Javan-Nikkhah, "Biochemical defense responses of tolerant and susceptible lettuce accessions following infection by Sclerotinia sclerotiorum", Archives of Phytopathology and Plant Protection, p. 1, 2020
DOI: https://doi.org/10.1080/03235408.2020.1869385