This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] T. J. Flowers, Improving crop salt tolerance, J. Exp. Bot. 55 (2004) 307-319.
[2] R. Munns, M. Tester, Mechanisms of salinity tolerance, Annu. Rev. Plant Biol. 59 (2008) 651–681.
DOI: https://doi.org/10.1146/annurev.arplant.59.032607.092911[3] A. Wahhab, Salt tolerance of various varieties of agricultural crops at the germination stage, in Salinity Problems in the Arid Zone. Proc. Teheran Symposium on Arid Zone Research, 14, UNESCO, 1961, 185-192.
[4] R. Munns, Comparative physiology of salt and water stress, Plant Cell Environ. 25 (2002) 239-250.
[5] J. Cuartero, M.C. Bolarin, M.J. Asins, V. Moreno, Increasing salt tolerance in the tomato, J. Exp. Bot. 57 (2006) 1045-1058.
[6] M. Akbar, Breeding for salinity resistance in rice, in Prospects for bio-saline research; Ahmed, R., Pietro, A.S., Eds.; Department of Botany, University of Karachi, Pakistan, 1986, 37-55.
[7] L. Menezes-Benavente, S.P. Kernodle, M. Margis-Pinheiro, J.G. Scandalios, Salt-induced antioxidant metabolism defenses in maize (Zea mays L. ) seedlings, Redox. Rep. 9 (2004) 29–36.
DOI: https://doi.org/10.1179/135100004225003888[8] H. Hichem, D. Mounir, E.A. Naceur, Differential responses of two maize (Zea mays L. ) varieties to salt stress: Changes on polyphenols composition of foliage and oxidative damages, Ind. Crops Prod. 30 (2009) 144–151.
DOI: https://doi.org/10.1016/j.indcrop.2009.03.003[9] D.A. Meloni, C.A. Oliva, J. Cambraia, Photosynthesis and activity of superoxide dismiotase, peroxidase and glutathione reductase in cotton under salt stress, Braz. J. Plant Physiol. 15 (2003) 12–21.
[10] N.P. Rout, B.P. Shaw, Salt tolerance in aquatic macrophytes: possible involvement of the antioxidative enzymes, Plant Sci. 160 (2001) 415–423.
DOI: https://doi.org/10.1016/s0168-9452(00)00406-4[11] J.M. Awika, L.M. Rooney, Sorghum phytochemicals and their potential impact on human health, Phytochemistry. 65 (2004) 1199-1221.
DOI: https://doi.org/10.1016/j.phytochem.2004.04.001[12] I.N. De Abreu, P. Mazzafera, Effect of water and temperature stress on the content of active constituents of Hypericum brasilienne Choisy, Plant Physiol. Biochem. 43 (2005) 241-248.
DOI: https://doi.org/10.1016/j.plaphy.2005.01.020[13] S. Kuntz, U. Wenzel, H. Daniel, Comparative analysis of the effects of flavonoids on proliferation, cytotoxity, and apoptosis in human colon cancer cell lines, Eur. J. Nutr. 38 (1999) 133-142.
[14] H. Czeczot, Biological activities of flavonoids: A review, Pol. J. Food Nutr. 950 (2000) 3-13.
[15] R.A. Dixon, N. Paiva, Stress-induced phenylpropanoid metabolism, The Plant Cell. 7 (1995) 1085-1097.
[16] M.R. Roberts, N.D. Paul, Seduced by the dark side: integrating molecular and ecological perspectives on the influence of light on plant defense against pests and pathogens, New Phytol. 170 (2006) 677-699.
DOI: https://doi.org/10.1111/j.1469-8137.2006.01707.x[17] R. Julkunen-Tiito, N. Nenadis, S. Neugart, M. Robson, G. Agati, J. Vepsa·la·inen, G. Zipoli, L. Nybakken, B. Winkler, M. Jansen, Assessing the response of plant flavonoids to UV radiation: anoverview of appropriate techniques, Phyto. Rev. 14 (2015).
DOI: https://doi.org/10.1007/s11101-014-9362-4[18] D. Krishnaiah, R. Sarbatly, R. Nithyanandam, A review on the antioxidant potential of medicinal plant species, Food Bioprod. Process. 89 (2011) 217-233.
DOI: https://doi.org/10.1016/j.fbp.2010.04.008[19] G. Agati, E. Azzarello, S. Pollastri, M. Tattini, Flavonoids as antioxidants in plants: location and functional significance, Plant Sci. 196 (2012) 67-76.
DOI: https://doi.org/10.1016/j.plantsci.2012.07.014[20] C. Brunetti, M. Di Ferdinando, A. Fini, S. Pollastri, M. Tattini, Flavonoids as antioxidants and development regulators: relative significance in plants and humans, Int. J. Mol. Sci. 14 (2013) 3540-3555.
DOI: https://doi.org/10.3390/ijms14023540[21] A. Wahid, A. Ghazanfar, Possible involvement of some secondary metabolites in salt tolerance of sugarcane, J. Plant Physiol. 163 (2006) 723–730.
DOI: https://doi.org/10.1016/j.jplph.2005.07.007[22] R. Ksouri, W. Megdiche, A. Debez, H. Falleh, C. Grignon, C. Abdelly, Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima, Plant Physiol. Biochem. 45 (2007) 244-249.
DOI: https://doi.org/10.1016/j.plaphy.2007.02.001[23] F. Hanen, R. Ksouri, W. Megdiche, N. Trabelsi, M. Boulaaba, C. Abdelly, Effect of salinity on growth, leaf phenolic content and antioxidant scavenging activity in Cynara cardunculus L., in Biosaline Agriculture and High Salinity Tolerance; Abdelli, C., Ozturk, M., Ashraf, M., Grignon, Y.C., Eds.; Birkhauser Verlag, Switzerland, 2008, 335-343.
DOI: https://doi.org/10.1007/978-3-7643-8554-5_31[24] J.M. Navarro, P. Flores, C. Garrido, V. Martinez, Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity, Food Chem. 96 (2006) 66-73.
DOI: https://doi.org/10.1016/j.foodchem.2005.01.057[25] A.K. Parida, A.B. Das, Y. Sanada, P. Mohanty, Effects of salinity on biochemical components of the mangrove, Aegiceras corniculatum, Aqua. Bot. 80 (2004) 77-87.
DOI: https://doi.org/10.1016/j.aquabot.2004.07.005[26] G.B. Gregorio, D. Senadhira, R.D. Mendoza, Screening rice for salinity tolerance, in IRRI Discussion Paper Series no. 22, International Rice Research Institute, Manila, Philippines, 1997, 1-30.
[27] H.H. Ti, Q. Li, R.F. Zhang, M.W. Zhang, Y.Y. Deng, Z.C. Wei, Free and bound phenolic profiles and antioxidant activity of milled fractions of different indica rice varieties cultivated in southern China, Food Chem. 159 (2014) 166-174.
DOI: https://doi.org/10.1016/j.foodchem.2014.03.029[28] A. Djeridane, M. Yousfi, B. Nadjemi, D. Boutassouna, P. Stocker, N. Vidal, Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds, Food Chem. 97 (2006) 654-660.
DOI: https://doi.org/10.1016/j.foodchem.2005.04.028[29] E. Bandeoglu, F. Eyidogan, M. Yuceland, H.A. Oktem, Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress, Plant Growth Regul. 42 (2004) 69-77.
DOI: https://doi.org/10.1023/b:grow.0000014891.35427.7b[30] M.R. Suplick-Ploense, Y.L. Qian, J.C. Read, Salinity tolerance of Texas bluegrass, Kentucky bluegrass, and their hybrids, Crop Sci. 42 (2002) 2025-(2030).
DOI: https://doi.org/10.2135/cropsci2002.2025[31] V. Kumar, V. Shriram, T.D. Nikam, N. Jawali, M.G. Shitole, Antioxidant enzyme activities and protein profiling under salt stress in indica rice genotypes differing in salt tolerance, Arch Agron Soil Sci. 55 (2009) 379-394.
DOI: https://doi.org/10.1080/03650340802595543[32] M.M. Chaves, J. Flexas, C. Pinheiro, Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell, Annal. Bot. 103 (2009) 551-560.
DOI: https://doi.org/10.1093/aob/mcn125[33] A. Rezazadeh, A. Ghasemzadeh, M. Brani, T. Telmadarrehei, Effect of salinity on phenolic composition and antioxidant activity of Artichoke (Cynara scolymus L. ) leaves, J. Med. Plant Res. 6 (2012) 245-252.
DOI: https://doi.org/10.3923/rjmp.2012.245.252[34] J. Miljuš-Djukić, N. Stanisavljević, S. Radović, Ž. Jovanović, A. Mikić, V. Maksimović, Differential response of three contrasting pea (Pisum arvense, P. sativum and P. fulvum) species to salt stress: assessment of variation in antioxidative defence and miRNA expression, Aust. J. Crop. Sci. 7 (2013).
[35] M. Hussain, M. Farooq, M. Shehzad, M.B. Khan, A. Wahid, G. Shabir, Evaluating the performance of elite sunflower hybrids under saline conditions, Int. J. Agric. Biol. 14 (2012) 131-135.
[36] S. Danai-Tambhale, V. Kumar, V. Shriram, Differential response of two scented indica rice (Oryza sativa) cultivars under salt stress, J. Stress Physiol. Biochem. 7 (2011) 387-397.
[37] K.S. Gould, J. McKelvie, K.R. Markham, Do anthocyanins function as antioxidants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury, Plant Cell Environ. 25 (2002) 1261-1269.
DOI: https://doi.org/10.1046/j.1365-3040.2002.00905.x[38] F. Tomas-Barberan, J.C. Espin, Phenolic compounds and related enzymes as determinants of quality of fruits and vegetables, J. Sci. Food. Agric. 81 (2001) 853-876.
DOI: https://doi.org/10.1002/jsfa.885[39] I.K. Valentine, V.K. Maria, B. Bruno, Phenolic cycle in plants and environment, J. Mol. Cell Biol. 2 (2003) 13-18.
[40] S. Jamalian, M. Gholami, M. Esna-Ashari, Abscisic acid-mediated leaf phenolic compounds, plant growth and yield is strawberry under different salt stress regimes, Theor. Exp. Plant Physiol. 25 (2013) 291-299.
[41] K. Wakabayashi, T. Hoson, S. Kamisaka, Osmotic stress suppresses cell wall stiffening and the increase in cell wall bound ferulic and diferulic acids in wheat coleoptiles, Plant Physiol. 113 (1997) 967-973.
DOI: https://doi.org/10.1104/pp.113.3.967[42] D.M. Li, Y.X. Nie, J. Zhang, J.S. Yin, Q. Li, X.J. Wang, J.G. Bai, Ferulic acid pretreatment enhances dehydration-stress tolerance of cucumber seedlings, Biol. Plant. 57 (2013) 711-717.
DOI: https://doi.org/10.1007/s10535-013-0326-0[43] K. Krygier, F. Sosulski, L. Hogge, Free, esterified, and insoluble-bound phenolic acids. 1. Extraction and purification procedure, J. Agric. Food. Chem. 30 (1982) 330-334.
DOI: https://doi.org/10.1021/jf00110a028[44] T.D. Xuan, E. Tsuzuki, H. Terao, T.D. Khanh, Correlation between growth inhibitory exhibition and suspected allelochemicals (phenolic compounds) in the extract of alfalfa (Medicago sativa L. ), Plant Prod. Sci. 6 (2003) 165-171.
DOI: https://doi.org/10.1626/pps.6.165[1] P. Gupta, B. De, "Metabolomics analysis of rice responses to salinity stress revealed elevation of serotonin, and gentisic acid levels in leaves of tolerant varieties", Plant Signaling & Behavior, Vol. 12, p. e1335845, 2017
DOI: https://doi.org/10.1080/15592324.2017.1335845[2] T. Xuan, D. Khang, "Effects of Exogenous Application of Protocatechuic Acid and Vanillic Acid to Chlorophylls, Phenolics and Antioxidant Enzymes of Rice (Oryza sativa L.) in Submergence", Molecules, Vol. 23, p. 620, 2018
DOI: https://doi.org/10.3390/molecules23030620[3] "Response of Plant Secondary Metabolites to Environmental Factors", Molecules, Vol. 23, p. 762, 2018
DOI: https://doi.org/10.3390/molecules23040762[4] W. Nouman, M. Qureshi, M. Shaheen, M. Zubair, Biotic and Abiotic Stress Tolerance in Plants, p. 77, 2018
DOI: https://doi.org/10.1007/978-981-10-9029-5_4[5] S. Rao, L. Schwarz, A. Santhakumar, K. Chinkwo, C. Blanchard, "Cereal phenolic contents as affected by variety and environment", Cereal Chemistry, 2018
DOI: https://doi.org/10.1002/cche.10085[6] I. Linić, D. Šamec, J. Grúz, V. Vujčić Bok, M. Strnad, B. Salopek-Sondi, "Involvement of Phenolic Acids in Short-Term Adaptation to Salinity Stress is Species-Specific among Brassicaceae", Plants, Vol. 8, p. 155, 2019
DOI: https://doi.org/10.3390/plants8060155[7] M. Bhuyan, K. Parvin, S. Mohsin, J. Mahmud, M. Hasanuzzaman, M. Fujita, "Modulation of Cadmium Tolerance in Rice: Insight into Vanillic Acid-Induced Upregulation of Antioxidant Defense and Glyoxalase Systems", Plants, Vol. 9, p. 188, 2020
DOI: https://doi.org/10.3390/plants9020188[8] J. Kim, J. Lyu, J. Ryu, D. Kim, M. Lee, J. Kim, B. Ha, J. Ahn, S. Kwon, "Comparison of Salinity Tolerance Between Grain and Sweet Sorghum Germplasms [Sorghum Bicolor (L.) Moench]", Korean Journal of Breeding Science, Vol. 52, p. 32, 2020
DOI: https://doi.org/10.9787/KJBS.2020.52.1.32[9] L. Amraee, F. Rahmani, B. Abdollahi Mandoulakani, "Exogenous application of 24-epibrassinosteroid mitigates NaCl toxicity in flax by modifying free amino acids profile and antioxidant defence system", Functional Plant Biology, Vol. 47, p. 565, 2020
DOI: https://doi.org/10.1071/FP19191[10] N. Wagay, R. Lone, S. Rafiq, S. Bashir, Plant Phenolics in Sustainable Agriculture, p. 241, 2020
DOI: https://doi.org/10.1007/978-981-15-4890-1_11[11] F. Ahmad, A. Kamal, A. Singh, F. Ashfaque, S. Alamri, M. Siddiqui, M. Khan, Y. Hu, " Seed priming with gibberellic acid induces high salinity tolerance in Pisum sativum through antioxidants, secondary metabolites and up‐regulation of antiporter genes ", Plant Biology, 2020
DOI: https://doi.org/10.1111/plb.13187[12] M. Patel, M. Kumar, W. Li, Y. Luo, D. Burritt, N. Alkan, L. Tran, "Enhancing Salt Tolerance of Plants: From Metabolic Reprogramming to Exogenous Chemical Treatments and Molecular Approaches", Cells, Vol. 9, p. 2492, 2020
DOI: https://doi.org/10.3390/cells9112492