Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILNS > Volume 57 > Effects of Salinity Stress on Growth and Phenolics...
< Back to Volume

Effects of Salinity Stress on Growth and Phenolics of Rice (Oryza sativa L.)

Full Text PDF

Abstract:

This study was conducted to determine the correlation between of salinity stress on growth and phenolic compounds in rice. It was observed that salinity stress caused a significant decrease in shoot lengths, fresh and dry weights of all rice varieties. Under salinity stress, changes of chemical contents also differed among phenolic compounds and rice cultivars. Total phenolics and flavonoids, and contents of vanillin and protocatechuic acid in tolerant varieties were strongly increased, whereas in contrast, they were markedly reduced in the susceptible cultivar. Ferulic acid and p-coumaric acid were detected only in tolerance rice. Vanillin and protocatechuic acid may play a role, but ferulic acid and p-coumaric acid may be much involved in the tolerant mechanism against salinity stress. Ferulic acid and p-coumaric acid and their derivatives are able to be exploited as promising agents to reduce detrimental effects of salinity stress on rice production.

Info:

Periodical:
International Letters of Natural Sciences (Volume 57)
Pages:
1-10
Citation:
L. T. Minh et al., "Effects of Salinity Stress on Growth and Phenolics of Rice (Oryza sativa L.)", International Letters of Natural Sciences, Vol. 57, pp. 1-10, 2016
Online since:
August 2016
Export:
Distribution:
References:

[1] T. J. Flowers, Improving crop salt tolerance, J. Exp. Bot. 55 (2004) 307-319.

[2] R. Munns, M. Tester, Mechanisms of salinity tolerance, Annu. Rev. Plant Biol. 59 (2008) 651–681.

DOI: https://doi.org/10.1146/annurev.arplant.59.032607.092911

[3] A. Wahhab, Salt tolerance of various varieties of agricultural crops at the germination stage, in Salinity Problems in the Arid Zone. Proc. Teheran Symposium on Arid Zone Research, 14, UNESCO, 1961, 185-192.

[4] R. Munns, Comparative physiology of salt and water stress, Plant Cell Environ. 25 (2002) 239-250.

[5] J. Cuartero, M.C. Bolarin, M.J. Asins, V. Moreno, Increasing salt tolerance in the tomato, J. Exp. Bot. 57 (2006) 1045-1058.

[6] M. Akbar, Breeding for salinity resistance in rice, in Prospects for bio-saline research; Ahmed, R., Pietro, A.S., Eds.; Department of Botany, University of Karachi, Pakistan, 1986, 37-55.

[7] L. Menezes-Benavente, S.P. Kernodle, M. Margis-Pinheiro, J.G. Scandalios, Salt-induced antioxidant metabolism defenses in maize (Zea mays L. ) seedlings, Redox. Rep. 9 (2004) 29–36.

DOI: https://doi.org/10.1179/135100004225003888

[8] H. Hichem, D. Mounir, E.A. Naceur, Differential responses of two maize (Zea mays L. ) varieties to salt stress: Changes on polyphenols composition of foliage and oxidative damages, Ind. Crops Prod. 30 (2009) 144–151.

DOI: https://doi.org/10.1016/j.indcrop.2009.03.003

[9] D.A. Meloni, C.A. Oliva, J. Cambraia, Photosynthesis and activity of superoxide dismiotase, peroxidase and glutathione reductase in cotton under salt stress, Braz. J. Plant Physiol. 15 (2003) 12–21.

[10] N.P. Rout, B.P. Shaw, Salt tolerance in aquatic macrophytes: possible involvement of the antioxidative enzymes, Plant Sci. 160 (2001) 415–423.

DOI: https://doi.org/10.1016/s0168-9452(00)00406-4

[11] J.M. Awika, L.M. Rooney, Sorghum phytochemicals and their potential impact on human health, Phytochemistry. 65 (2004) 1199-1221.

DOI: https://doi.org/10.1016/j.phytochem.2004.04.001

[12] I.N. De Abreu, P. Mazzafera, Effect of water and temperature stress on the content of active constituents of Hypericum brasilienne Choisy, Plant Physiol. Biochem. 43 (2005) 241-248.

DOI: https://doi.org/10.1016/j.plaphy.2005.01.020

[13] S. Kuntz, U. Wenzel, H. Daniel, Comparative analysis of the effects of flavonoids on proliferation, cytotoxity, and apoptosis in human colon cancer cell lines, Eur. J. Nutr. 38 (1999) 133-142.

[14] H. Czeczot, Biological activities of flavonoids: A review, Pol. J. Food Nutr. 950 (2000) 3-13.

[15] R.A. Dixon, N. Paiva, Stress-induced phenylpropanoid metabolism, The Plant Cell. 7 (1995) 1085-1097.

[16] M.R. Roberts, N.D. Paul, Seduced by the dark side: integrating molecular and ecological perspectives on the influence of light on plant defense against pests and pathogens, New Phytol. 170 (2006) 677-699.

DOI: https://doi.org/10.1111/j.1469-8137.2006.01707.x

[17] R. Julkunen-Tiito, N. Nenadis, S. Neugart, M. Robson, G. Agati, J. Vepsa·la·inen, G. Zipoli, L. Nybakken, B. Winkler, M. Jansen, Assessing the response of plant flavonoids to UV radiation: anoverview of appropriate techniques, Phyto. Rev. 14 (2015).

DOI: https://doi.org/10.1007/s11101-014-9362-4

[18] D. Krishnaiah, R. Sarbatly, R. Nithyanandam, A review on the antioxidant potential of medicinal plant species, Food Bioprod. Process. 89 (2011) 217-233.

DOI: https://doi.org/10.1016/j.fbp.2010.04.008

[19] G. Agati, E. Azzarello, S. Pollastri, M. Tattini, Flavonoids as antioxidants in plants: location and functional significance, Plant Sci. 196 (2012) 67-76.

DOI: https://doi.org/10.1016/j.plantsci.2012.07.014

[20] C. Brunetti, M. Di Ferdinando, A. Fini, S. Pollastri, M. Tattini, Flavonoids as antioxidants and development regulators: relative significance in plants and humans, Int. J. Mol. Sci. 14 (2013) 3540-3555.

DOI: https://doi.org/10.3390/ijms14023540

[21] A. Wahid, A. Ghazanfar, Possible involvement of some secondary metabolites in salt tolerance of sugarcane, J. Plant Physiol. 163 (2006) 723–730.

DOI: https://doi.org/10.1016/j.jplph.2005.07.007

[22] R. Ksouri, W. Megdiche, A. Debez, H. Falleh, C. Grignon, C. Abdelly, Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima, Plant Physiol. Biochem. 45 (2007) 244-249.

DOI: https://doi.org/10.1016/j.plaphy.2007.02.001

[23] F. Hanen, R. Ksouri, W. Megdiche, N. Trabelsi, M. Boulaaba, C. Abdelly, Effect of salinity on growth, leaf phenolic content and antioxidant scavenging activity in Cynara cardunculus L., in Biosaline Agriculture and High Salinity Tolerance; Abdelli, C., Ozturk, M., Ashraf, M., Grignon, Y.C., Eds.; Birkhauser Verlag, Switzerland, 2008, 335-343.

DOI: https://doi.org/10.1007/978-3-7643-8554-5_31

[24] J.M. Navarro, P. Flores, C. Garrido, V. Martinez, Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity, Food Chem. 96 (2006) 66-73.

DOI: https://doi.org/10.1016/j.foodchem.2005.01.057

[25] A.K. Parida, A.B. Das, Y. Sanada, P. Mohanty, Effects of salinity on biochemical components of the mangrove, Aegiceras corniculatum, Aqua. Bot. 80 (2004) 77-87.

DOI: https://doi.org/10.1016/j.aquabot.2004.07.005

[26] G.B. Gregorio, D. Senadhira, R.D. Mendoza, Screening rice for salinity tolerance, in IRRI Discussion Paper Series no. 22, International Rice Research Institute, Manila, Philippines, 1997, 1-30.

[27] H.H. Ti, Q. Li, R.F. Zhang, M.W. Zhang, Y.Y. Deng, Z.C. Wei, Free and bound phenolic profiles and antioxidant activity of milled fractions of different indica rice varieties cultivated in southern China, Food Chem. 159 (2014) 166-174.

DOI: https://doi.org/10.1016/j.foodchem.2014.03.029

[28] A. Djeridane, M. Yousfi, B. Nadjemi, D. Boutassouna, P. Stocker, N. Vidal, Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds, Food Chem. 97 (2006) 654-660.

DOI: https://doi.org/10.1016/j.foodchem.2005.04.028

[29] E. Bandeoglu, F. Eyidogan, M. Yuceland, H.A. Oktem, Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress, Plant Growth Regul. 42 (2004) 69-77.

DOI: https://doi.org/10.1023/b:grow.0000014891.35427.7b

[30] M.R. Suplick-Ploense, Y.L. Qian, J.C. Read, Salinity tolerance of Texas bluegrass, Kentucky bluegrass, and their hybrids, Crop Sci. 42 (2002) 2025-(2030).

DOI: https://doi.org/10.2135/cropsci2002.2025

[31] V. Kumar, V. Shriram, T.D. Nikam, N. Jawali, M.G. Shitole, Antioxidant enzyme activities and protein profiling under salt stress in indica rice genotypes differing in salt tolerance, Arch Agron Soil Sci. 55 (2009) 379-394.

DOI: https://doi.org/10.1080/03650340802595543

[32] M.M. Chaves, J. Flexas, C. Pinheiro, Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell, Annal. Bot. 103 (2009) 551-560.

DOI: https://doi.org/10.1093/aob/mcn125

[33] A. Rezazadeh, A. Ghasemzadeh, M. Brani, T. Telmadarrehei, Effect of salinity on phenolic composition and antioxidant activity of Artichoke (Cynara scolymus L. ) leaves, J. Med. Plant Res. 6 (2012) 245-252.

DOI: https://doi.org/10.3923/rjmp.2012.245.252

[34] J. Miljuš-Djukić, N. Stanisavljević, S. Radović, Ž. Jovanović, A. Mikić, V. Maksimović, Differential response of three contrasting pea (Pisum arvense, P. sativum and P. fulvum) species to salt stress: assessment of variation in antioxidative defence and miRNA expression, Aust. J. Crop. Sci. 7 (2013).

[35] M. Hussain, M. Farooq, M. Shehzad, M.B. Khan, A. Wahid, G. Shabir, Evaluating the performance of elite sunflower hybrids under saline conditions, Int. J. Agric. Biol. 14 (2012) 131-135.

[36] S. Danai-Tambhale, V. Kumar, V. Shriram, Differential response of two scented indica rice (Oryza sativa) cultivars under salt stress, J. Stress Physiol. Biochem. 7 (2011) 387-397.

[37] K.S. Gould, J. McKelvie, K.R. Markham, Do anthocyanins function as antioxidants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury, Plant Cell Environ. 25 (2002) 1261-1269.

DOI: https://doi.org/10.1046/j.1365-3040.2002.00905.x

[38] F. Tomas-Barberan, J.C. Espin, Phenolic compounds and related enzymes as determinants of quality of fruits and vegetables, J. Sci. Food. Agric. 81 (2001) 853-876.

DOI: https://doi.org/10.1002/jsfa.885

[39] I.K. Valentine, V.K. Maria, B. Bruno, Phenolic cycle in plants and environment, J. Mol. Cell Biol. 2 (2003) 13-18.

[40] S. Jamalian, M. Gholami, M. Esna-Ashari, Abscisic acid-mediated leaf phenolic compounds, plant growth and yield is strawberry under different salt stress regimes, Theor. Exp. Plant Physiol. 25 (2013) 291-299.

[41] K. Wakabayashi, T. Hoson, S. Kamisaka, Osmotic stress suppresses cell wall stiffening and the increase in cell wall bound ferulic and diferulic acids in wheat coleoptiles, Plant Physiol. 113 (1997) 967-973.

DOI: https://doi.org/10.1104/pp.113.3.967

[42] D.M. Li, Y.X. Nie, J. Zhang, J.S. Yin, Q. Li, X.J. Wang, J.G. Bai, Ferulic acid pretreatment enhances dehydration-stress tolerance of cucumber seedlings, Biol. Plant. 57 (2013) 711-717.

DOI: https://doi.org/10.1007/s10535-013-0326-0

[43] K. Krygier, F. Sosulski, L. Hogge, Free, esterified, and insoluble-bound phenolic acids. 1. Extraction and purification procedure, J. Agric. Food. Chem. 30 (1982) 330-334.

DOI: https://doi.org/10.1021/jf00110a028

[44] T.D. Xuan, E. Tsuzuki, H. Terao, T.D. Khanh, Correlation between growth inhibitory exhibition and suspected allelochemicals (phenolic compounds) in the extract of alfalfa (Medicago sativa L. ), Plant Prod. Sci. 6 (2003) 165-171.

DOI: https://doi.org/10.1626/pps.6.165
Show More Hide