This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] T. J. Flowers, Improving crop salt tolerance, J. Exp. Bot. 55 (2004) 307-319.
[2] R. Munns, M. Tester, Mechanisms of salinity tolerance, Annu. Rev. Plant Biol. 59 (2008) 651–681.
DOI: https://doi.org/10.1146/annurev.arplant.59.032607.092911[3] A. Wahhab, Salt tolerance of various varieties of agricultural crops at the germination stage, in Salinity Problems in the Arid Zone. Proc. Teheran Symposium on Arid Zone Research, 14, UNESCO, 1961, 185-192.
[4] R. Munns, Comparative physiology of salt and water stress, Plant Cell Environ. 25 (2002) 239-250.
[5] J. Cuartero, M.C. Bolarin, M.J. Asins, V. Moreno, Increasing salt tolerance in the tomato, J. Exp. Bot. 57 (2006) 1045-1058.
[6] M. Akbar, Breeding for salinity resistance in rice, in Prospects for bio-saline research; Ahmed, R., Pietro, A.S., Eds.; Department of Botany, University of Karachi, Pakistan, 1986, 37-55.
[7] L. Menezes-Benavente, S.P. Kernodle, M. Margis-Pinheiro, J.G. Scandalios, Salt-induced antioxidant metabolism defenses in maize (Zea mays L. ) seedlings, Redox. Rep. 9 (2004) 29–36.
DOI: https://doi.org/10.1179/135100004225003888[8] H. Hichem, D. Mounir, E.A. Naceur, Differential responses of two maize (Zea mays L. ) varieties to salt stress: Changes on polyphenols composition of foliage and oxidative damages, Ind. Crops Prod. 30 (2009) 144–151.
DOI: https://doi.org/10.1016/j.indcrop.2009.03.003[9] D.A. Meloni, C.A. Oliva, J. Cambraia, Photosynthesis and activity of superoxide dismiotase, peroxidase and glutathione reductase in cotton under salt stress, Braz. J. Plant Physiol. 15 (2003) 12–21.
[10] N.P. Rout, B.P. Shaw, Salt tolerance in aquatic macrophytes: possible involvement of the antioxidative enzymes, Plant Sci. 160 (2001) 415–423.
DOI: https://doi.org/10.1016/s0168-9452(00)00406-4[11] J.M. Awika, L.M. Rooney, Sorghum phytochemicals and their potential impact on human health, Phytochemistry. 65 (2004) 1199-1221.
DOI: https://doi.org/10.1016/j.phytochem.2004.04.001[12] I.N. De Abreu, P. Mazzafera, Effect of water and temperature stress on the content of active constituents of Hypericum brasilienne Choisy, Plant Physiol. Biochem. 43 (2005) 241-248.
DOI: https://doi.org/10.1016/j.plaphy.2005.01.020[13] S. Kuntz, U. Wenzel, H. Daniel, Comparative analysis of the effects of flavonoids on proliferation, cytotoxity, and apoptosis in human colon cancer cell lines, Eur. J. Nutr. 38 (1999) 133-142.
[14] H. Czeczot, Biological activities of flavonoids: A review, Pol. J. Food Nutr. 950 (2000) 3-13.
[15] R.A. Dixon, N. Paiva, Stress-induced phenylpropanoid metabolism, The Plant Cell. 7 (1995) 1085-1097.
[16] M.R. Roberts, N.D. Paul, Seduced by the dark side: integrating molecular and ecological perspectives on the influence of light on plant defense against pests and pathogens, New Phytol. 170 (2006) 677-699.
DOI: https://doi.org/10.1111/j.1469-8137.2006.01707.x[17] R. Julkunen-Tiito, N. Nenadis, S. Neugart, M. Robson, G. Agati, J. Vepsa·la·inen, G. Zipoli, L. Nybakken, B. Winkler, M. Jansen, Assessing the response of plant flavonoids to UV radiation: anoverview of appropriate techniques, Phyto. Rev. 14 (2015).
DOI: https://doi.org/10.1007/s11101-014-9362-4[18] D. Krishnaiah, R. Sarbatly, R. Nithyanandam, A review on the antioxidant potential of medicinal plant species, Food Bioprod. Process. 89 (2011) 217-233.
DOI: https://doi.org/10.1016/j.fbp.2010.04.008[19] G. Agati, E. Azzarello, S. Pollastri, M. Tattini, Flavonoids as antioxidants in plants: location and functional significance, Plant Sci. 196 (2012) 67-76.
DOI: https://doi.org/10.1016/j.plantsci.2012.07.014[20] C. Brunetti, M. Di Ferdinando, A. Fini, S. Pollastri, M. Tattini, Flavonoids as antioxidants and development regulators: relative significance in plants and humans, Int. J. Mol. Sci. 14 (2013) 3540-3555.
DOI: https://doi.org/10.3390/ijms14023540[21] A. Wahid, A. Ghazanfar, Possible involvement of some secondary metabolites in salt tolerance of sugarcane, J. Plant Physiol. 163 (2006) 723–730.
DOI: https://doi.org/10.1016/j.jplph.2005.07.007[22] R. Ksouri, W. Megdiche, A. Debez, H. Falleh, C. Grignon, C. Abdelly, Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima, Plant Physiol. Biochem. 45 (2007) 244-249.
DOI: https://doi.org/10.1016/j.plaphy.2007.02.001[23] F. Hanen, R. Ksouri, W. Megdiche, N. Trabelsi, M. Boulaaba, C. Abdelly, Effect of salinity on growth, leaf phenolic content and antioxidant scavenging activity in Cynara cardunculus L., in Biosaline Agriculture and High Salinity Tolerance; Abdelli, C., Ozturk, M., Ashraf, M., Grignon, Y.C., Eds.; Birkhauser Verlag, Switzerland, 2008, 335-343.
DOI: https://doi.org/10.1007/978-3-7643-8554-5_31[24] J.M. Navarro, P. Flores, C. Garrido, V. Martinez, Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity, Food Chem. 96 (2006) 66-73.
DOI: https://doi.org/10.1016/j.foodchem.2005.01.057[25] A.K. Parida, A.B. Das, Y. Sanada, P. Mohanty, Effects of salinity on biochemical components of the mangrove, Aegiceras corniculatum, Aqua. Bot. 80 (2004) 77-87.
DOI: https://doi.org/10.1016/j.aquabot.2004.07.005[26] G.B. Gregorio, D. Senadhira, R.D. Mendoza, Screening rice for salinity tolerance, in IRRI Discussion Paper Series no. 22, International Rice Research Institute, Manila, Philippines, 1997, 1-30.
[27] H.H. Ti, Q. Li, R.F. Zhang, M.W. Zhang, Y.Y. Deng, Z.C. Wei, Free and bound phenolic profiles and antioxidant activity of milled fractions of different indica rice varieties cultivated in southern China, Food Chem. 159 (2014) 166-174.
DOI: https://doi.org/10.1016/j.foodchem.2014.03.029[28] A. Djeridane, M. Yousfi, B. Nadjemi, D. Boutassouna, P. Stocker, N. Vidal, Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds, Food Chem. 97 (2006) 654-660.
DOI: https://doi.org/10.1016/j.foodchem.2005.04.028[29] E. Bandeoglu, F. Eyidogan, M. Yuceland, H.A. Oktem, Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress, Plant Growth Regul. 42 (2004) 69-77.
DOI: https://doi.org/10.1023/b:grow.0000014891.35427.7b[30] M.R. Suplick-Ploense, Y.L. Qian, J.C. Read, Salinity tolerance of Texas bluegrass, Kentucky bluegrass, and their hybrids, Crop Sci. 42 (2002) 2025-(2030).
DOI: https://doi.org/10.2135/cropsci2002.2025[31] V. Kumar, V. Shriram, T.D. Nikam, N. Jawali, M.G. Shitole, Antioxidant enzyme activities and protein profiling under salt stress in indica rice genotypes differing in salt tolerance, Arch Agron Soil Sci. 55 (2009) 379-394.
DOI: https://doi.org/10.1080/03650340802595543[32] M.M. Chaves, J. Flexas, C. Pinheiro, Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell, Annal. Bot. 103 (2009) 551-560.
DOI: https://doi.org/10.1093/aob/mcn125[33] A. Rezazadeh, A. Ghasemzadeh, M. Brani, T. Telmadarrehei, Effect of salinity on phenolic composition and antioxidant activity of Artichoke (Cynara scolymus L. ) leaves, J. Med. Plant Res. 6 (2012) 245-252.
DOI: https://doi.org/10.3923/rjmp.2012.245.252[34] J. Miljuš-Djukić, N. Stanisavljević, S. Radović, Ž. Jovanović, A. Mikić, V. Maksimović, Differential response of three contrasting pea (Pisum arvense, P. sativum and P. fulvum) species to salt stress: assessment of variation in antioxidative defence and miRNA expression, Aust. J. Crop. Sci. 7 (2013).
[35] M. Hussain, M. Farooq, M. Shehzad, M.B. Khan, A. Wahid, G. Shabir, Evaluating the performance of elite sunflower hybrids under saline conditions, Int. J. Agric. Biol. 14 (2012) 131-135.
[36] S. Danai-Tambhale, V. Kumar, V. Shriram, Differential response of two scented indica rice (Oryza sativa) cultivars under salt stress, J. Stress Physiol. Biochem. 7 (2011) 387-397.
[37] K.S. Gould, J. McKelvie, K.R. Markham, Do anthocyanins function as antioxidants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury, Plant Cell Environ. 25 (2002) 1261-1269.
DOI: https://doi.org/10.1046/j.1365-3040.2002.00905.x[38] F. Tomas-Barberan, J.C. Espin, Phenolic compounds and related enzymes as determinants of quality of fruits and vegetables, J. Sci. Food. Agric. 81 (2001) 853-876.
DOI: https://doi.org/10.1002/jsfa.885[39] I.K. Valentine, V.K. Maria, B. Bruno, Phenolic cycle in plants and environment, J. Mol. Cell Biol. 2 (2003) 13-18.
[40] S. Jamalian, M. Gholami, M. Esna-Ashari, Abscisic acid-mediated leaf phenolic compounds, plant growth and yield is strawberry under different salt stress regimes, Theor. Exp. Plant Physiol. 25 (2013) 291-299.
[41] K. Wakabayashi, T. Hoson, S. Kamisaka, Osmotic stress suppresses cell wall stiffening and the increase in cell wall bound ferulic and diferulic acids in wheat coleoptiles, Plant Physiol. 113 (1997) 967-973.
DOI: https://doi.org/10.1104/pp.113.3.967[42] D.M. Li, Y.X. Nie, J. Zhang, J.S. Yin, Q. Li, X.J. Wang, J.G. Bai, Ferulic acid pretreatment enhances dehydration-stress tolerance of cucumber seedlings, Biol. Plant. 57 (2013) 711-717.
DOI: https://doi.org/10.1007/s10535-013-0326-0[43] K. Krygier, F. Sosulski, L. Hogge, Free, esterified, and insoluble-bound phenolic acids. 1. Extraction and purification procedure, J. Agric. Food. Chem. 30 (1982) 330-334.
DOI: https://doi.org/10.1021/jf00110a028[44] T.D. Xuan, E. Tsuzuki, H. Terao, T.D. Khanh, Correlation between growth inhibitory exhibition and suspected allelochemicals (phenolic compounds) in the extract of alfalfa (Medicago sativa L. ), Plant Prod. Sci. 6 (2003) 165-171.
DOI: https://doi.org/10.1626/pps.6.165[1] P. Gupta, B. De, "Metabolomics analysis of rice responses to salinity stress revealed elevation of serotonin, and gentisic acid levels in leaves of tolerant varieties", Plant Signaling & Behavior, Vol. 12, p. e1335845, 2017
DOI: https://doi.org/10.1080/15592324.2017.1335845[2] T. Xuan, D. Khang, "Effects of Exogenous Application of Protocatechuic Acid and Vanillic Acid to Chlorophylls, Phenolics and Antioxidant Enzymes of Rice (Oryza sativa L.) in Submergence", Molecules, Vol. 23, p. 620, 2018
DOI: https://doi.org/10.3390/molecules23030620[3] "Response of Plant Secondary Metabolites to Environmental Factors", Molecules, Vol. 23, p. 762, 2018
DOI: https://doi.org/10.3390/molecules23040762[4] W. Nouman, M. Qureshi, M. Shaheen, M. Zubair, Biotic and Abiotic Stress Tolerance in Plants, p. 77, 2018
DOI: https://doi.org/10.1007/978-981-10-9029-5_4[5] S. Rao, L. Schwarz, A. Santhakumar, K. Chinkwo, C. Blanchard, "Cereal phenolic contents as affected by variety and environment", Cereal Chemistry, 2018
DOI: https://doi.org/10.1002/cche.10085[6] I. Linić, D. Šamec, J. Grúz, V. Vujčić Bok, M. Strnad, B. Salopek-Sondi, "Involvement of Phenolic Acids in Short-Term Adaptation to Salinity Stress is Species-Specific among Brassicaceae", Plants, Vol. 8, p. 155, 2019
DOI: https://doi.org/10.3390/plants8060155[7] M. Bhuyan, K. Parvin, S. Mohsin, J. Mahmud, M. Hasanuzzaman, M. Fujita, "Modulation of Cadmium Tolerance in Rice: Insight into Vanillic Acid-Induced Upregulation of Antioxidant Defense and Glyoxalase Systems", Plants, Vol. 9, p. 188, 2020
DOI: https://doi.org/10.3390/plants9020188[8] J. Kim, J. Lyu, J. Ryu, D. Kim, M. Lee, J. Kim, B. Ha, J. Ahn, S. Kwon, "Comparison of Salinity Tolerance Between Grain and Sweet Sorghum Germplasms [Sorghum Bicolor (L.) Moench]", Korean Journal of Breeding Science, Vol. 52, p. 32, 2020
DOI: https://doi.org/10.9787/KJBS.2020.52.1.32[9] L. Amraee, F. Rahmani, B. Abdollahi Mandoulakani, "Exogenous application of 24-epibrassinosteroid mitigates NaCl toxicity in flax by modifying free amino acids profile and antioxidant defence system", Functional Plant Biology, Vol. 47, p. 565, 2020
DOI: https://doi.org/10.1071/FP19191[10] N. Wagay, R. Lone, S. Rafiq, S. Bashir, Plant Phenolics in Sustainable Agriculture, p. 241, 2020
DOI: https://doi.org/10.1007/978-981-15-4890-1_11[11] F. Ahmad, A. Kamal, A. Singh, F. Ashfaque, S. Alamri, M. Siddiqui, M. Khan, Y. Hu, " Seed priming with gibberellic acid induces high salinity tolerance in Pisum sativum through antioxidants, secondary metabolites and up‐regulation of antiporter genes ", Plant Biology, 2020
DOI: https://doi.org/10.1111/plb.13187[12] M. Patel, M. Kumar, W. Li, Y. Luo, D. Burritt, N. Alkan, L. Tran, "Enhancing Salt Tolerance of Plants: From Metabolic Reprogramming to Exogenous Chemical Treatments and Molecular Approaches", Cells, Vol. 9, p. 2492, 2020
DOI: https://doi.org/10.3390/cells9112492[13] S. Tlahig, L. Bellani, I. Karmous, F. Barbieri, M. Loumerem, S. Muccifora, "Response to Salinity in Legume Species: An Insight on the Effects of Salt Stress during Seed Germination and Seedling Growth", Chemistry & Biodiversity, Vol. 18, 2021
DOI: https://doi.org/10.1002/cbdv.202000917[14] P. Benincasa, E. Bravi, O. Marconi, S. Lutts, G. Tosti, B. Falcinelli, "Transgenerational Effects of Salt Stress Imposed to Rapeseed (Brassica napus var. oleifera Del.) Plants Involve Greater Phenolic Content and Antioxidant Activity in the Edible Sprouts Obtained from Offspring Seeds", Plants, Vol. 10, p. 932, 2021
DOI: https://doi.org/10.3390/plants10050932[15] F. Ahmad, A. Kamal, A. Singh, F. Ashfaque, S. Alamri, M. Siddiqui, M. Khan, Y. Hu, " Seed priming with gibberellic acid induces high salinity tolerance in Pisum sativum through antioxidants, secondary metabolites and up‐regulation of antiporter genes ", Plant Biology, Vol. 23, p. 113, 2021
DOI: https://doi.org/10.1111/plb.13187[16] S. Jamalian, M. Mahmoodi-Eshkaftaki, "Developing a hybrid technique to optimize abscisic acid concentration in a saline condition: A multi-objective strategy to improve strawberry phenolic acids and growth factors", Computers and Electronics in Agriculture, Vol. 190, p. 106459, 2021
DOI: https://doi.org/10.1016/j.compag.2021.106459[17] S. Jamalian, M. Mahmoodi-Eshkaftaki, "Developing a hybrid technique to optimize abscisic acid concentration in a saline condition: A multi-objective strategy to improve strawberry phenolic acids and growth factors", Computers and Electronics in Agriculture, Vol. 190, p. 106459, 2021
DOI: https://doi.org/10.1016/j.compag.2021.106459[18] S. Jamalian, M. Mahmoodi-Eshkaftaki, "Developing a hybrid technique to optimize abscisic acid concentration in a saline condition: A multi-objective strategy to improve strawberry phenolic acids and growth factors", Computers and Electronics in Agriculture, Vol. 190, p. 106459, 2021
DOI: https://doi.org/10.1016/j.compag.2021.106459[19] N. Kumar, H. Anuragi, M. Rana, P. Priyadarshini, R. Singhal, S. Chand, . Indu, V. Sood, S. Singh, S. Ahmed, Y. Saranga, " Elucidating morpho‐anatomical, physio‐biochemical and molecular mechanism imparting salinity tolerance in oats ( Avena sativa ) ", Plant Breeding, Vol. 140, p. 835, 2021
DOI: https://doi.org/10.1111/pbr.12937[20] I. Linić, S. Mlinarić, L. Brkljačić, I. Pavlović, A. Smolko, B. Salopek-Sondi, "Ferulic Acid and Salicylic Acid Foliar Treatments Reduce Short-Term Salt Stress in Chinese Cabbage by Increasing Phenolic Compounds Accumulation and Photosynthetic Performance", Plants, Vol. 10, p. 2346, 2021
DOI: https://doi.org/10.3390/plants10112346[21] S. Jamalian, M. Mahmoodi-Eshkaftaki, "Developing a hybrid technique to optimize abscisic acid concentration in a saline condition: A multi-objective strategy to improve strawberry phenolic acids and growth factors", Computers and Electronics in Agriculture, Vol. 190, p. 106459, 2021
DOI: https://doi.org/10.1016/j.compag.2021.106459[22] I. Karmous, S. Tlahig, M. Loumerem, B. Lachiheb, T. Bouhamda, M. Mabrouk, M. Debouba, A. Chaoui, "Assessment of the risks of copper- and zinc oxide-based nanoparticles used in Vigna radiata L. culture on food quality, human nutrition and health", Environmental Geochemistry and Health, 2021
DOI: https://doi.org/10.1007/s10653-021-01162-z[23] S. Jamalian, M. Mahmoodi-Eshkaftaki, "Developing a hybrid technique to optimize abscisic acid concentration in a saline condition: A multi-objective strategy to improve strawberry phenolic acids and growth factors", Computers and Electronics in Agriculture, Vol. 190, p. 106459, 2021
DOI: https://doi.org/10.1016/j.compag.2021.106459[24] D. Sen, S. Bhattacharjee, "Genetic and seasonal variability of bioactive polyphenolic compounds and antioxidant‐based phytonutrient promise of diverse vegetable amaranths of Indo‐Gangetic plains of West Bengal", JSFA reports, Vol. 2, p. 116, 2022
DOI: https://doi.org/10.1002/jsf2.34[25] M. Mugwanya, F. Kimera, M. Dawood, H. Sewilam, "Elucidating the Effects of Combined Treatments of Salicylic Acid and l-Proline on Greenhouse-Grown Cucumber Under Saline Drip Irrigation", Journal of Plant Growth Regulation, 2022
DOI: https://doi.org/10.1007/s00344-022-10634-0[26] N. Wagay, R. Lone, S. Rafiq, S. Bashir, Plant Phenolics in Sustainable Agriculture, p. 241, 2020
DOI: https://doi.org/10.1007/978-981-15-4890-1_11[27] S. Ahmed, S. Ahmed, S. Roy, S. Woo, K. Sonawane, A. Shohael, "Effect of salinity on the morphological, physiological and biochemical properties of lettuce (Lactuca sativa L.) in Bangladesh", Open Agriculture, Vol. 4, p. 361, 2019
DOI: https://doi.org/10.1515/opag-2019-0033