This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] S. Banerjee, N. Dey, M. Adak, Assessment of some biomarkers under submergence stress in some rice cultivars varying in responses, Am. J Plant Sci. 6 (2015) 84-94.
DOI: https://doi.org/10.4236/ajps.2015.61010[2] D.J. Markill, A.M. Ismail, A.M. Pamplona, et al., Stress tolerance rice varieties for adaptation to a changing climate. Crop Environ. Bioinformatics 7 (2010) 250-259.
[3] F. Doni, I. Anizan, C.M.Z. Che Radziah, et al., Enhancement of rice seed germination and vigor by Trichoderma spp., Res. J. App. Sci. Eng. Technol. 7 (2014) 4547-4552.
DOI: https://doi.org/10.19026/rjaset.7.832[4] H. Kende, E. Van der Knaap, H.T. Cho, Deep-water rice: a model plant to study stem elongation, Plant Physiol. 118 (1998) 1105-1110.
DOI: https://doi.org/10.1104/pp.118.4.1105[5] A.M. Ismail, E.M. Ella, G.V. Vergara, et al., Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (Oryza sativa), Ann. Bot. 103 (2009) 197-209.
DOI: https://doi.org/10.1093/aob/mcn211[6] M. Boscaiu, M. Sanchéz, I. Bautista, et al., Phenolic compound as stress markers in plant from Gypsum habitats, Bulletin UASVM Horticulture 67 (2010) 44-49.
[7] L. Bravo, Polyphenols chemistry, dietary sources, metabolism, and nutritional significance, Nutr. Rev. 56 (1998) 317-333.
[8] S. Iqbal, M.I. Bhanger, F. Anwar, Antioxidant properties and compounds of some commercially available varieties of rice bran in Pakistan, Food Chem. 93 (2005) 265-272.
DOI: https://doi.org/10.1016/j.foodchem.2004.09.024[9] H. Ti, R. Zhang, M. Zhang, et al., Dynamic changes in the free and bound phenolic compounds and antioxidant activity of brown rice at different germination stages, Food Chem. 161 (2014) 337-344.
DOI: https://doi.org/10.1016/j.foodchem.2014.04.024[10] A. Djeridane, M. Yousfi, B. Nadjemi, et al., Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds, Food Chem. 97 (2006) 654-660.
DOI: https://doi.org/10.1016/j.foodchem.2005.04.028[11] M.B. Jackson, Ethylene-promoted elongation: an adaptation to submergence stress. Ann. Bot. 101 (2008) 229-248.
[12] S. Angaji, E.M. Septiningsih, D.J. Mackill, et al., QTLs associated with tolerance of anaerobic conditions during germination in rice (Oryza sativa L. ), Euphytica 172 (2010) 159-168.
DOI: https://doi.org/10.1007/s10681-009-0014-5[13] B. Miro, A.M. Ismail, Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (Oryza sativa L. ), Front Plant Sci. 4 (2013) 269.
DOI: https://doi.org/10.3389/fpls.2013.00269[14] S.O. Satler, H. Kende, Ethylene and the growth of rice seedlings, Plant Physiol. 79 (1985) 194–198.
DOI: https://doi.org/10.1104/pp.79.1.194[15] L. Magneschi, P. Perata, Rice germination and seedling growth in the absence of oxygen, Ann. Bot. 103 (2009) 181-196.
DOI: https://doi.org/10.1093/aob/mcn121[16] AOSA (Association of Official Seed Analyst), Seed vigor testing handbook, Contribution No. 32 to the handbook on seed testing, 653 Constitution Avenue NE, Washington, (2009).
[17] H.T.T. Vu, O.E. Manangkil, N. Mori, et al., Submergence-induced ADH and ALDH gene expression in japonica and indica rice with contrasting levels of seedling vigor under submergence stress, Biotechnol. Biotechnol. Equip. 23 (2009) 1469-1473.
DOI: https://doi.org/10.2478/v10133-009-0013-7[18] A. Ramakrishna, G.A. Ravishankar, Influence of abiotic stress signals on secondary metabolites in plants, Plant Signal. Behav. 6 (2011) 1720-1731.
DOI: https://doi.org/10.4161/psb.6.11.17613[19] E.A. Joseph, V.V. Radhakrishnan, K.V. Mohanan, Variation in accumulation of phenolics in some native rice cultivars of north Kerala, India in response to salt stress, Asian J. Agric. Res. 9 (2015) 315-324.
DOI: https://doi.org/10.3923/ajar.2015.315.324[20] M. Walter, E. Marchesan, Phenolic compounds and antioxidant activity of rice, Braz. Arch. Biol. Technol. 54 (2011) 371-377.
DOI: https://doi.org/10.1590/s1516-89132011000200020[21] A. Harukaze, M. Murata, S. Homma, Analyses of free and bound phenolics in rice, Food Sci. Technol. Res. 5 (1999) 74-79.
DOI: https://doi.org/10.3136/fstr.5.74[22] N.T. Quan, L.H. Anh, D.T. Khang, et al., Involvement of secondary metabolites in response to drought stress of rice (Oryza sativa L. ), Agriculture 6 (2016) 23.
[1] T. Xuan, D. Khang, "Effects of Exogenous Application of Protocatechuic Acid and Vanillic Acid to Chlorophylls, Phenolics and Antioxidant Enzymes of Rice (Oryza sativa L.) in Submergence", Molecules, Vol. 23, p. 620, 2018
DOI: https://doi.org/10.3390/molecules23030620[2] T. Khanh, L. Anh, L. Nghia, K. Huu Trung, P. Bich Hien, D. Minh Trung, T. Dang Xuan, "Allelopathic Responses of Rice Seedlings under Some Different Stresses", Plants, Vol. 7, p. 40, 2018
DOI: https://doi.org/10.3390/plants7020040[3] R. Sarkar, K. Chakraborty, K. Chattopadhyay, S. Ray, D. Panda, A. Ismail, Advances in Rice Research for Abiotic Stress Tolerance, p. 281, 2019
DOI: https://doi.org/10.1016/B978-0-12-814332-2.00013-7[4] A. Khosravi, S. Razavi, "The role of bioconversion processes to enhance polyphenol bioaccessibility in rice bioaccessibility of polyphenols in rice", Food Bioscience, p. 100605, 2020
DOI: https://doi.org/10.1016/j.fbio.2020.100605