Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILNS > ILNS Volume 56 > Isolation, Identification and Extracellular...
< Back to Volume

Isolation, Identification and Extracellular Enzymatic Activity of Culturable Extremely Halophilic Archaea and Bacteria of IncheBoroun Wetland

Full Text PDF


Extremely halophilic diversity of IncheBroun wetland located in the north of Iran was investigated by using culture-dependent methods. Sampling was carried out in May and September 2014. In each sampling 4 distinct regions of wetland were analyzed by using complex media like MGM, JCM168, MH1 and an alkaliphilic medium containing 23% salts. After incubation at 40°C, a total of 406 isolates and 2.1 × 106 CFU/ml were obtained in culture media. Among them 361 isolates were obtained from MGM and 39 isolates from JCM 168, 3 isolates from MH1 and 3 isolates from the alkaliphilic media. Initial morphological, biochemical and physiological tests were performed. Production of 4 hydrolytic enzymes by 45 selected strains was assayed qualitatively. A total of 38, 19 and 6 strains were able to produce lipase, DNase and amylase activity. Protease activity was not observed among strains. As total 45 strains were selected randomly and phylogenetic analysis of 16S rRNA was performed for them. Among selected strains 40 isolated strians belonged to Haloarchaea and were belonged to the genera: Haloarcula(30%), Halorubrum(27.5%), Haloferax(17.5%), Halobellus (10%), Halogeometricum(5.2%), Halobacterium(2.6%), Halolamina(2.6%), Halorhabdus (2.6%) and Halostagnicola (2.6%). Haloarcula and Halorubrum were the dominant populations. A total of 5 strains belonged to domain of Bacteria and were similar to members of Rhodovibrio (40%), Pseudomonas (40%) and Salicola (20%).


International Letters of Natural Sciences (Volume 56)
M. Rasooli et al., "Isolation, Identification and Extracellular Enzymatic Activity of Culturable Extremely Halophilic Archaea and Bacteria of IncheBoroun Wetland", International Letters of Natural Sciences, Vol. 56, pp. 40-51, 2016
Online since:
July 2016

[1] H. Babavalian, et al., Isolation and identification of moderately halophilic bacteria producing hydrolytic enzymes from the largest hypersaline playa in Iran, Microbiology. 82(4) (2013) 466-474.

[2] H. Babavalian, et al., Comparison of bacterial biodiversity and enzyme production in three hypersaline lakes; Urmia, Howz-Soltan and Aran-Bidgol, Indian journal of microbiology. 54(4) (2014) 444-449.

[3] Y. Ma, et al., Halophiles 2010: life in saline environments, Applied and environmental microbiology. 76(21) (2010) 6971-6981.

[4] M. Rasooli, M. Ali Amoozegar and A.A. Sepahy, Isolation and identification of culturable extremely halophilic archaea of Inche-Boroun wetland, Taxonomy & Biosystematics. 5(16) (2013).

[5] A. Oren, The order halobacteriales, in The prokaryotes. 2006, Springer. pp.113-164.

[6] A. Oren, A. Ventosa and W.D. Grant, Proposed minimal standards for description of new taxa in the order Halobacteriales, International Journal of Systematic and Evolutionary Microbiology. 47(1) (1997) 233-238.

[7] N. Empadinhas and M.S. d. Costa, Diversity and biosynthesis of compatible solutes in hyper/thermophiles, (2006).

[8] R. Margesin and F. Schinner, Potential of halotolerant and halophilic microorganisms for biotechnology, Extremophiles. 5(2) (2001) 73-83.

[9] A. Makhdoumi-Kakhki, et al., Prokaryotic diversity in Aran-Bidgol salt lake, the largest hypersaline playa in Iran, Microbes and Environments. 27(1) (2012) 87-93.

[10] H. Onishi, et al., Halophilic nuclease of a moderately halophilic Bacillus sp.: production, purification, and characterization, Applied and environmental microbiology. 45(1) (1983) 24-30.

[11] M.A. Amoozegar, F. Malekzadeh and K.A. Malik, Production of amylase by newly isolated moderate halophile, Halobacillus sp. strain MA-2, Journal of microbiological methods. 52(3) (2003) 353-359.

[12] M.A. Amoozegar, et al., Salinivibrio proteolyticus sp. nov., a moderately halophilic and proteolytic species from a hypersaline lake in Iran, International journal of systematic and evolutionary microbiology. 58(5) (2008) 1159-1163.

[13] M.A. Amoozegar, et al., Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA-2, Journal of basic microbiology. 48(3) (2008) 160-167.

[14] J. Marmur, A procedure for the isolation of deoxyribonucleic acid from micro-organisms, Journal of Molecular Biology. 3(2) (1961) 208-IN1.

[15] O. -S. Kim, et al., Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species, International journal of systematic and evolutionary microbiology. 62(3) (2012) 716-721.

[16] J.D. Thompson, et al., The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucleic acids research. 25(24) (1997) 4876-4882.

[17] S. Kumar, et al., MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences, Briefings in bioinformatics. 9(4) (2008) 299-306.

[18] R. Elevi, et al., Characterization of extremely halophilic Archaea isolated from the Ayvalik Saltern, Turkey, World Journal of Microbiology and Biotechnology. 20(7) (2004) 719-725.

[19] L. Maturrano, et al., Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes, Applied and Environmental Microbiology. 72(6) (2006) 3887-3895.

[20] H. Minegishi, et al., Acidophilic haloarchaeal strains are isolated from various solar salts, Saline systems. 4(1) (2008) 1.

[21] K. Mani, B.B. Salgaonkar and J.M. Braganca, Culturable halophilic archaea at the initial and crystallization stages of salt production in a natural solar saltern of Goa, India, Aquatic biosystems. 8(1) (2012) 1.

[22] R. Ghosh, et al., Antibiotic resistance profile of halophilic microorganisms isolated from tannery effluent, Indian journal of biotechnology. 9(1) (2010) 80-86.

[23] M.L. Holmes and M.L. Dyall-Smith, Mutations in DNA gyrase result in novobiocin resistance in halophilic archaebacteria, Journal of bacteriology. 173(2) (1991) 642-648.

[24] N. Moldoveanu and M. Kates, Effect of bacitracin on growth and phospholipid, glycolipid and bacterioruberin biosynthesis in Halobacterium cutirubrum, Microbiology. 135(9) (1989) 2503-2508.

[25] F.F. Hezayen, et al., Characterization of a novel halophilic archaeon, Halobiforma haloterrestris gen. nov., sp. nov., and transfer of Natronobacterium nitratireducens to Halobiforma nitratireducens comb. nov, International journal of systematic and evolutionary microbiology. 52(6) (2002).

[26] M. Dworkin, et al., The Prokaryotes: Vol. 7: proteobacteria: Delta and Epsilon subclasses. deeply rooting bacteria. 2006: Springer Science & Business Media.

[27] X. Xu, et al., Culturable halophilic archaeal diversity of Ayakekumu salt lake located in Xinjiang, China, Acta Ecologica Sinica. 27(8) (2007) 3119-3123.

[28] S.E. D'Souza, W. Altekar and S.F. D'Souza, Adaptive response of Haloferax mediterranei to low concentrations of NaCl (< 20%) in the growth medium, Archives of microbiology. 168(1) (1997) 68-71.

[29] R.E. Bardavid, P. Khristo and A. Oren, Interrelationships between Dunaliella and halophilic prokaryotes in saltern crystallizer ponds, Extremophiles. 12(1) (2008) 5-14.

[30] C. Lizama, et al., Taxonomic study of extreme halophilic archaea isolated from the Salar de Atacama, Chile, Systematic and applied microbiology. 24(3) (2001) 464-474.

[31] A.M. Kakhki, M.A. Amoozegar and E.M. Khaledi, Diversity of hydrolytic enzymes in haloarchaeal strains isolated from salt lake, International Journal of Environmental Science & Technology. 8(4) (2011) 705-714.

[32] K. Kharroub, et al., Halorubrum ezzemoulense sp. nov., a halophilic archaeon isolated from Ezzemoul sabkha, Algeria, International journal of systematic and evolutionary microbiology. 56(7) (2006) 1583-1588.

[33] C. Fendrich, Halovibrio variabilis gen. nov. sp. nov., Pseudomonas halophila sp. nov. and a new halophilic aerobic coccoid Eubacterium from Great Salt Lake, Utah, USA, Systematic and Applied Microbiology. 11(1) (1988) 36-43.

Show More Hide
Cited By:

[1] A. Naghoni, G. Emtiazi, M. Amoozegar, Z. Etemadifar, S. Fazeli, "REP-PCR Analysis to Study Prokaryotic Biodiversity from Lake Meyghan", International Letters of Natural Sciences, Vol. 61, p. 69, 2017


[2] A. Naghoni, G. Emtiazi, M. Amoozegar, M. Cretoiu, L. Stal, Z. Etemadifar, S. Shahzadeh Fazeli, H. Bolhuis, "Microbial diversity in the hypersaline Lake Meyghan, Iran", Scientific Reports, Vol. 7, 2017


[3] Z. Salari, M. Kazemi, M. Shirsalimian, "Isolation and Molecular Identification of Halophilic Microorganisms from Around Saghand Uranium Mine, Saghand Desert, Iran", Geomicrobiology Journal, p. 1, 2019


[4] A. Oren, R. Montalvo‐Rodríguez, Bergey's Manual of Systematics of Archaea and Bacteria, p. 1, 2018


[5] S. Abbasi, G. Emtiazi, " MALDI‐TOF analysis of a novel extremophile peptide purified from Halarchaeum acidiphilum ASDL78 with antiarchaeal and antibacterial activities ", Journal of Basic Microbiology, Vol. 60, p. 920, 2020

Show More Hide