Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILNS > ILNS Volume 56 > Weed Allelochemicals and Possibility for Pest...
< Back to Volume

Weed Allelochemicals and Possibility for Pest Management

Full Text PDF


Purpose: Weed interference is a constraint in agricultural practice. The crop-weed interaction has been extensively described in literature, but the weed-weed interaction and their potential usage in crop production have not much been understood. In this paper, the interactions of allelochemicals of the weeds which cause troublesome in crop production and ecosystem against weeds, crops, and pathogens are described. Principal results: Weed allelochemicals are classified into many chemical classes, and the majority is consisting of phenolics acids, alkaloids, terpenes, flavonoids, long chain fatty acids, lactones, and other volatile compounds. Type of weed allelochemicals and their doses are varied among weed species. Some allelochemicals such as catechin (+/-) have been reported to be responsible for weed invasiveness. Some crops exude germination stimulants to parasitic weeds such as Striga spp. and Orobanche spp. In contrast to their negative impacts on crop production, many weeds can be exploited as promising sources to control harmful insects, fungi, bacteria, and weeds. For instance, Ageratum conyzoides is a destructive weed in crop production, but it exerted excellent insecticidal, antifungal, and herbicidal capacity and promoted citrus productivity in A. conyzoides intercropped citrus orchards. Major conclusions: In general, weeds compete with crops by chemical pathway by releasing plant growth inhibitors to reduce crop growth. Weed allelochemicals may be successfully exploited for pest and weed controls in an integrated sustainable crop productoiin. Some weed allelochemicals are potent for development of natural pesticides.


International Letters of Natural Sciences (Volume 56)
T. D. Xuan et al., "Weed Allelochemicals and Possibility for Pest Management", International Letters of Natural Sciences, Vol. 56, pp. 25-39, 2016
Online since:
July 2016

[1] J.R. Qasem, C.L. Foy, Weed allelopathy, its ecological impact and future prospects: a review, J. Crop Prod. 4 (2001) 43-119. doi: 10. 1300/J144v04n02_02.


[2] S.R. Eskelsen, G.D. Crabtree, The role of allelopathy in buckwheat (Fagopyrum sagittatum) inhibition of Canada thistle (Cirsium arvense), Weed Sci. 43 (1995) 70-74. doi: 10. 1614/WT-09-050. 1.

[3] K.L. Kalburtji, A. Gagianas, Effects of sugarbeet as a preceding crop on cotton, J. Agron. Crop Sci. 178 (1997) 59-63. doi: 10. 1111/j. 1439-037X. 1997. tb00351. x.

[4] J.S. Sauerborn, Legumes used for weed control in agro-ecosystems in the tropics, Plant Res. Dev. 50 (1999) 74-82.

[5] T.D. Xuan, I.M. Chung, T.D. Khanh, S. Tawata, Identification of phytotoxic substances from early growth of barnyardgrass (Echinochloacrus-galli) root exudates, J. Chem. Ecol. 32 (2006a) 895-906. doi: 10. 1007/s10886-006-9035-x.

[6] T.D. Xuan, A.A. Elzaawely, F. Deba, M. Fukuta, S. Tawata, Mimosine in Leucaena as a potent bio-herbicide, Agron. Sustain. Dev. 26 (2006b) 89-97. doi: 10. 1051/agro: 2006001.

[7] H.P. Bais, R. Vepachedu, R. Callaway, Allelopathy and exotic plant invasion: from molecules and genes to species, Sci. 301 (2003) 1377-1380. doi: 10. 1126/science. 327. 5967. 781-b.


[8] S.O. Duke, A.C. Blair, F.E. Dayan, R.D. Johnson, K.M. Meepagala, D. Cook, J. Bajsa, Is (-) catechin a novel weapon of spotted knapweed (Centaurea stoebe)?, J. Chem. Ecol. 35 (2009) 142-153. doi: 10. 1007/s10886-008-9587-z.

[9] U.P. Singh, V.B. Pandey, K.N. Singh, R.D.N. Singh, Antifungal activity of some new flavones and flavone glycosides of Echinops echinatus, Can. J. Bot. 66 (1998) 1901-1903. doi: 10. 1139/b88-260.


[10] O. Spring, U. Rodon, F.A. Macias, Sesquiterpenes from noncapitate glandular trichomes of Helianthus annus, Phytochem. 31 (1992) 1541-1544. doi: 10. 1016/0031-9422(92)83102-5.

[11] F.A. Tomas-Barberan, A.D. Msonthi, K. Hostettmann, Antifungal epicuticular methylated flavonoids from Helichrysum nitens, Phytochem. 27 (1998) 75-755. doi: 10. 1016/0031-9422(88)84087-1.


[12] A.G. Gonzalez, T. Abad, I.A. Jiménez, A.G. Ravelo, J.G. L.Z. Aguiar, L.S. Andrés, M. Plasencia, J.R. Herrera, L. Moujir, A first study of antibacterial activity of diterpenes from some Salvia species (Lamiaceae), Biochem. Syst. Ecol. 17 (1989).

[13] L. Kasasian, Control of Orobanche, Int. J. Pest Manage. 19 (1973) 368-371. doi: 10. 1080/09670877309412782.


[14] H.H. Linke, H. Schnell, M.C. Saxena, Factors affecting the seed bank of Orobanche crenata in fields under lentil based cropping systems in northern Syria, in: J.K. Ransom, L.J. Musselman, A.D. Worsham, C. Parkers (Eds. ), Proceedings of the 5th International Symposium on parasitic weeds. Nairobi: CIMMYT, 1991, pp.321-327.

[15] R. Labrada, R. Perez, Non-chemical control methods for Orobanche ramose, Agrotenica de Cuba. 20 (1988) 35-40.

[16] B. Bouhatous, P. Jacquard, The effect of combination of hosts on infection capacity of Orobanche crenata Forks, in: A.H. Pieterse, J.A.C. Verkei, S.J. Borg (Eds), Biology and management of orobanche, proceedings of the third international workshop on orobanche and related striga research. Amsterdam, The Netherlands, Royal Tropical Institute, 1994, pp.320-333.

[17] E.L. Rice, Allelopathy. New York, Academic Press, 1974, p.352. doi: 10. 1007/BF02869951.

[18] A.R. Putnam, C.S. Tang, Allelopathy: state of science, in: A.R. Putnam, C.S. Tang (Eds), The Science of Allelopathy. New York, John Wiley and Sons, Inc., 1986, pp.1-19.

[19] J.V. Lovett, J. Levitt, Allelochemicals in a future agriculture, in: B. Stonehouse (ed), Biological Husbandry. London, Butterworth, 1981, pp.169-181.

[20] W.W. Fletcher, R.C. Kirkwood, A growth inhibitor found in Centaurea spp, Can. J. Plant Sci. 43 (1982) 475-481. doi: 10. 4141/cjps63-098.

[21] J.R. Qasem, Allelopathic effect of white top (Lepidium draba) on wheat and barley, Allelopathy J. 1 (1994) 29-40.

[22] S.D. Kanchan, J. Chandra, Pollen allelopathy – a new phenomenon, New Phytol. 84 (1980) 739-746. doi: 10. 1111/j. 1469-8137. 1980. tb04786. x.


[23] J.R. Qasem, Aqueous extract effect of nettle-leaved goosefoot (Chenopodium murale L. ) on wheat and barley, Res. J. Apeppo Univ. 14 (1990) 37-53.

[24] J. Arines, E. Vieitez, J.L.F. Mantilla, In: Herbicides and Plant Growth Regulators. London, Granada, 1974, pp.93-99.

[25] D.T. Bell, D.E. Koeppe, Noncompetitive effects of giant foxtail on the growth of corn, Agron. J. 64 (1972) 321-325. doi: 10. 2134/agronj1972. 00021962006400030019x.

[26] D.A. Levin, The chemical defenses of plants to pathogens and herbivores, Annu. Rev. Ecol. Syst. 7 (1976) 121-159. doi: 10. 1146/annurev. es. 07. 110176. 001005.

[27] T. Swain, Secondary compounds as protective agents, Annu. Rev. Plant Phys. 28 (1977) 479-501. doi: 10. 1146/annurev. p.28. 060177. 002403.

[28] F. Deba, T.D. Xuan, M. Yasuda, S. Tawata, Herbicidal and fungicidal activities and identification of potential phytotoxins from Bidens pilosa L. var. radiata Scherff, Weed Biol. Manag. 7 (2007) 77-83. doi: 10. 1111/j. 1445-6664. 2007. 00239. x.

[29] G. Campbell, J.D.H. Lambert, T. Arnason, G.H.N. Towers, Allelopathic properties of alpha-terthienyl and phenylheptatriyne, naturally occurring compounds from species of Asteraceae, J. Chem. Ecol. 8 (1982) 961-972. doi: 10. 1007/BF00987662.

[30] T. Yamamoto, K. Yokotani-Tomita, S. Kosemura, S. Yamamura, K. Yamada, K. Hasegawa, Allelopathic substance exuded from a serious weed, germinating barnyardgrass (Echinochloa crus-galli L. ) roots, J. Plant Growth Regul. 18 (1999).

[31] Y. Gu, H.B. Li, C.H. Kong, Allelopathic potential of barnyardgrass on rice and soil microbes in paddy, Allelopathy J. 21 (2008) 389-395.

[32] T.D. Xuan, T. Toyama, M. Fukuta, T.D. Khanh, S. Tawata, Chemical interaction in the invasiveness of cogongrass (Imperata cylindrica (L. ) Beauv. ), J. Agr. Food Chem. 57 (2009) 9448-9453. doi: 10. 1021/jf902310j.

[33] A.S. Abdul-Wahab, F.A.G. Al-Naib, Inhibitional effects of Imperata cylindrica (L. ), Bull. Iraqi Nat. Hist. Mus. Pub. 5 (1972) 17-24.

[34] J.H.H. Eussen, Isolation of growth inhibitory substances from alang-alang (Imperata cylindrica (L. ). in: J.H.H. Eussen (Ed. ), Studies on tropical weed Imperata cylindrica (L. ) Beauv. var. major. Utrecht, Drukkerij Elinkwijk Bv, (1978).


[35] J.H.H. Eussen, G.J. Niemann, Zeitschrift fur Pflanzenphysiol 102: 263, cited by J.V. Lovett (1986).

[36] S.W. Adkins, A. Shabbir, Biology, ecology and management of the invasive pathenium weed (Parthenium hysterophorus L. ), Pest Manag. Sci. 70 (2014) 1023-1029. doi: 10. 1002/ps. 3708.


[37] K.K. Barman, V.P. Singh, R.P. Dubey, P.K. Singh, A. Dixit, A.R. Sharma, Challenges and opportunities in weed management under a changing agricultural scenario, in: Recent Advances in Weed Management. Springer, New York Heidelberg Dordrecht London, 2014, pp.365-390.


[38] S.W. Adkins, S.C. Navie, K. Dhlileepan, Parthenium weed in Australia: research progress and prospects, in: T.V. Ramachadra Prasad, H.V. Nanjappa, R. Devendra (Eds. ), Proceedings of the Second International Conference on Parthenium Management. University of Agricultural Sciences, Bangalore, India, 2005, pp.11-27.

[39] L. Nigatu, A. Hasen, J. Sharma, S.W. Adkins, Impact of Parthenium hysterophorus on grazing land communities in North-Eeastern Ethiopia, Weed Biol. Manag. 10 (2010) 143-152. doi: 10. 1111/j. 1445-6664. 2010. 00378. x.

[40] A. Tanveer, A. Khaliq, H.H. Ali, G. Mahajan, B.S. Chauhan, Interference and management of parthenium: the world's most important invasive weed, Crop Prot. 68 (2015) 49-59. doi: 10. 1016/j. cropro. 2014. 11. 005.

[41] H.P. Singh, Effect of parthenin - a sesquiterpene lactone from Parthenium hysterophorus, on early growth and physiology of Ageratum conyzoides, J. Chem. Ecol. 28 (2002) 2169-2179. doi: 10. 1023/A: 1021089013754.

[42] D.R. Batish, H.P. Singh, D.B. Saxena, R.K. Kohli, Weed suppressing ability of parthenin-a sesquiterpene lactone from Parthenium hyterophorus. N. Z., Plant Prot. 55 (2002) 218-221.

[43] D.R. Batish, Assessment of Parthenium against some weeds, A. Naturforsch 62 (2007) 367-372.

[44] C.F. Reinhardt, R.G. Belz, K. Hurle, Role of the allelochemical parthenin in the invasive strategy of the alient plant Parthenium hysterophorus L., South Afr. J. Bot. 75 (2009) 417-418. doi: 10. 1016/j. sajb. 2009. 02. 097.


[45] N. Ambiye, V. Golatkar, Phytochemical analysis of Lantana camara and Parthenium hysterophorus, Bioinfolet. 7 (2010) 135-136.

[46] C. Yebing, Allelopathic effects of Parthenium hysterophorus L. volatilos its chemical components, Allelopathy J. 27 (2011) 217.

[47] K. Jai, C. Abhishek, K. Ajita, B. Satish, J. Disha, Inhibitory potential of parthenin a sesquiterpene lactone against Fusarium oxysporum, Aspergillus niger and Drechslera hawaiiensis, Intel. J. Res. Biosci. 5 (2016) 72-75.

[48] W. Roder, S. Phenchanh, B. Keoboulapha, Weeds in slash and burn rice fields in northern Laos, Weed Res. 37 (1997) 111-119. doi: 10. 1046/j. 1365-3180. 1996. d01-6. x.


[49] R.K. Kohli, D.R. Batish, H.P. Singh, K.S. Dogra, Status, invasiveness and environmental threats of three tropical American invasive weeds (Parthenium hysterophorus L., Ageratum conyzoides L., Lantana camara L. ) in India, Biol. Invasions. 8 (2006).

[50] A.L. Okunade, Ageratum conyzoides L. (Asteraeae), Fitoterapia. 73 (2002) 1-16. doi: 10. 1016/S0367-326X(01)00364-1.

[51] T.D. Xuan, T. Shinkichi, N.H. Hong, T.D. Khanh, I.M. Chung, Assessment of phytotoxic action of Ageratum conyzoides L. (billy goat weed) on weeds, Crop Prot. 23 (2004) 915-922. doi: 10. 1016/j. cropro. 2004. 02. 005.

[52] C.H. Kong, F. Hu, X. Xu, M. Zhang, W. Liang, Volatile allelochemicals in the Ageratum conyzoides intercropped citrus orchard and their effects on mites Amblyseius newsami and Panonychus citri, J. Chem. Ecol. 31 (2005).

[53] W.S. Bowers, T. Ohta, J.S. Cleere, P.A. Marsella, Discovery of insect anti-juvenile hormone in plants, Science. 193 (1976) 542-547. doi: 10. 1126/science. 986685.


[54] C.H. Kong, Allelochemicals and their transformations in the Ageratum conyzoides intercropped citrus orchard soils, Plant Soil. 264 (2004) 149-157. doi: 10. 1023/B: PLSO. 0000047759. 65133. fa.

[55] C.H. Kong, Ecological pest management and control by using allelopathic weeds (Ageratum conyzoides, Ambrosia trifida, and Lantana camara) and their allelochemicals in China, Weed Biol. Manag. 10 (2010).

[56] J.H. Kil, K.C. Shim, K.A. Park, K. Kim, Inhibitory effects of Ambrosia trifida L. on the development of root hairs and protein patterns of radicle, Intel. J. Biol. Biomol. Agri. Food Biotech. Engin. 8 (2014) 608-611.

[57] C.H. Kong, P. Wang, C.X. Zhang, M.X. Zhang, F. Hu, Herbicidal potential of allelochemicals from Lantana camara against Eichlornia crasspipes and the alga Microsystis aeruginosa, Weed Res. 46 (2006).


[58] M.M. Williams, J.B. Masiunas, Functional relationships between giant ragweed (Ambrosia trifida) interference and sweet corn yield and ear traits, Weed Sci. 54 (2006) 948-953.

[59] E. Bloszyk, U. Rychlewska, B. Szczepanska, M. Holub, Sesquiterpene lactones of Ambrosia artemisiifolia L. and Ambrosia trifida L. species, Collect. Czech Chem. Commu. 57 (1992) 1092-1102. doi: 10. 1135/cccc19921092.


[60] T.S. Lu, J.P. Felix, V. David, H.F. Nikolaus, Sesquiterpenes and thiarubrines from Ambrosia trifida and its transformed roots, Phytochem. 33 (1993) 113-116. doi: 10. 1016/0031-9422(93)85405-G.

[61] P. Wang, W.J. Liang, C.H. Kong, Y. Jiang, Allelopathic potentials of volatile allelochemicals from Ambrosia trifida L. on other plants, Allelopathy J. 15 (2005) 131-136.

[62] P. Wang, C.H. Kong, C.X. Zhang, Chemical composition and antimicrobial activity of the essential oil from Ambrosia trifida L., Molecules 11 (2006) 549-555. doi: 10. 3390/11070549.


[63] L.G. Holm, D.L. Plucknett, J.V. Pancho, J.P. Herberger, The World's Worst Weeds: Distribution and Ecology. Krieger, Malabar, FL, (1991).

[64] C.B. Gentle, J.A. Duggin, Allelopathy as a competitive strategy in persistent thicklets of Lantana camara L. in three Australian forest communities, Plant Ecol. 132 (1997) 85-96. doi: 10. 1023/A: 1009707404802.

[65] E.L. Ghisalberti, Lantana camara L. (Verbenaceae), Fitoterapia 71 (2000) 467-486. doi: 10. 1016/S0367-326X(00)00202-1.

[66] M.C. Press, J.D. Scholes, C.R. Riches, Current status and future prospects for management of parasitic weeds (Striga and Orobanche), in: C.R. Riches (Ed. ), the World's Worst Weeds. British Crop Protection Council, Brighton, UK, 2001, pp.71-90.

[67] R. Matusova, R. Kumkum, F.W.A. Verstappen, M.C.R. Franssen, M.H. Beale and H.J. Bouwmeester, The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway, Plant Physiol. 139 (2005).


[68] J.H. Dawson, L.J. Musselman, P. Wolswinkel, I. Dorr, Biology and control of Cuscuta, Rev. Weed Sci. 6 (1994) 265-317.

[69] W. Huang, S.B. Wu, Y.L. Wang, Z.Y. Guo, E.J. Kennelly, C.L. Long, Chemical constituents from Striga asiatica and its chemotaxonomic study, Biochem. System Ecol. 48 (2013) 100-106. doi: 10. 1016/j. bse. 2012. 10. 010.


[70] T. Yokota, H. Sakai, K. Okuno, K. Yoneyama, Y. Takeuchi, Alectrol and orobanchol, Germination stimulants from Orobanche minor, from its host red clover, Phytochem. 49 (1998) 1967-1973. doi: 10. 1016/S0031-9422(98)00419-1.


[71] T.D. Khanh, L.C. Cong, T.D. Xuan, S.J. Lee, D.S. Kong, and I.M. Chung, Weed-suppressing potential of dodder (Cuscuta hygrophilae) and its phytotoxic constituents, Weed Sci. 56 (2008) 119-127. doi: http: /dx. doi. org/10. 1614/WS-07-102. 1.

[72] C.H. Muller, Inhibitory terpenes volatilized from Salvia shrubs, Bull. Torrey Bot. Club 92 (1965) 38-45. doi: 10. 2307/2483311.

[73] J. Wurzoburger, Y. Leshem, Physiological action of the germination inhibitor in the husk of Aegilops hotschyi Bioss, New Phytol. 68 (1969) 337-341. doi: 10. 1111/j. 1469-8137. 1969. tb06445. x.

[74] C.E. Colton, F.A. Einhellig, Allelopathic mechanisms of velvet leaf (Abutilon theophrasti Medic, Malvaceae) on soybean, Soil Sci. Soc. Am. J. 41 (1980) 903-908. doi: 10. 2307/2442868.

[75] I.S. Alsaadawi, E.L. Rice, Allelopathic effects of Polygonum aviculare L. I. Vegetational patterning, J. Chem. Ecol. 8 (1982) 993-1009. doi: 10. 1007/BF00987881.

[76] M. Vikherkova, Influence of active substances from rhizome of wheatgrass on growth and water balance of flax, in: A.M. Grodzinsky (Ed. ), Physiological-biochemical basis of plant interaction in phytocenoses. Keiv, Naukova Dumka, 1970, pp.135-140.

[77] G.D. Manners, D.S. Galitz, Allelopathy of small everlasting (Antennaria microphylla): Identification of constituents phytotoxic to leafy spurge (Euphorbia esula), Weed Sci. 34 (1986) 8-12.

[78] J. Lydon, J.R. Teasdale, P.K. Chen, Allelopathic activity of annual wormwood (Artemisia annua) and the role of artemisinin, Weed Sci. 45 (1997) 807-811.

[79] E.L. Rice, R.L. Parenti, Inhibition of nitrogen-fixing and nitrifying bacteria by seed plants. VI. Inhibitors produced by Bromus japonica Thunb, Southwest Nat. 12 (1967) 97-103. doi: 10. 2307/1934928.


[80] G. Grummer, H. Beyer, The influence exerted by species of Camelina on flax by means of toxic substances, Symposium of the British Ecological Society 1 (1960) 13-157.

[81] M.A.B. Mallik, R. Puchala, F.A. Grosz, A growth-inhibitory factor from lambquarters (Chenopodium album), J. Chem. Ecol. 20 (1994) 957-967. doi: 10. 1007/BF02059590.

[82] S.R. Ambika, Allelopathic interference of Chromolaena odorata (L. ), in: R.M. King, H. Robinson (Eds. ), Second world congress on allelopathy: critical analysis and future prospect. Lakehead University, Thunder Bay, Ontario, Canada, Abstract no 49, (1999).

[83] F. Hussain, T.W. Khan, A. Hussain, Allelopathic effects of Cirsium arvense (L. ) Scop, in: I. Ilahi, F. Hussain (Eds. ), Modern trends of plant science research in Pakistan. Proceedings in third national conference of plant scientists. Department of Botany, Peshawar, University of Peshawar, 1987, pp.24-28.

[84] R.S. Tames, M.D. Gesto, E. Vieitez, Growth substances isolated from tubers of Cyperus esculentus var. aureus, Physiol. Plant 28 (1973) 95-200. doi: 10. 1111/j. 1399-3054. 1973. tb01175. x.

[85] E.L. Rice, W.T. Penfound, L.M. Rohrbaugh, Seed dispersal and mineral nutrition in succession in abandoned fields in central Oklahoma, Ecol. 41 (1960) 224-228. doi: 10. 2307/1931958.

[86] R.L. Parenti, E.L. Rice, Inhibitional effects of Digitaria sanguinalis and possible role in old-field succession, Bull. Torrey Bot. Club 96 (1969) 70-78. doi: 10. 2307/2484009.

[87] S.R. Soni, K. Mohnot, Presence of an autotoxic factor in fruit carp of Echinops echinatus Roxb, J. Curr. Biosci. 5 (1988) 101-104.

[88] M.C. Salas, E. Vieitez, Activated de crecimiento de Ericaceae, Anales de Edafocogia y Agrobilogia 31 (1972) 1001-1009.

[89] A. Ballester, J.M. Albo, E. Vieitez, The allelopathic potential of Erica scoparia L., Oecol. 30 (1977) 55-6. doi: 10. 1007/BF00344891.


[90] Carballeira, A. Cuervo, Seasonal variation in allelopathic potential of soils from Erica australis L. healthland, Acta. Oecol. 1 (1980) 345-353.

[91] E.L. Rice, Inhibition of nitrogen-fixing and nitrifying bacteria by seed plants. IV. The inhibitors produced by Ambrosia elatior L. and Ambrosia psilostachya D. C., Southwest Nat. 10 (1965) 248-255. doi: 10. 2307/1934928.

[92] S. Kohmuenzer, Botanical and chemical studies of the collective species Gallium mollugo with reference to karyotypes growing in Poland. VI. Effects of extracts and some other chemical components of Galium molugo on the germination of seeds and growth of selected plant, Dissert. Pharm. Pharma. 17 (1965).

[93] H.P. Singh, D.R. Batish, R.K. Kohli, Autotoxicity: concept, organisms, and ecological significance, Crit. Rev. Plant Sci. 18 (1999) 757-772. doi: 10. 1080/07352689991309478.

[94] A.G. Winter, New physiological and biological aspects in the interrelationships between higher plants, Sym. Soc. Exp. Biol. 15 (1961) 229-244.

[95] S.D. Kanchan, Jayachandra, Pollen allelopathy - a new phenomenon, New Phytol. 84 (1976) 739-746.

[96] A.D.M. Glass, The allelopathic potential of phenolic acids associated with the rhizosphere of Pteridium aquilinum, Can. J. Bot. 54 (1976) 2440-2444. doi: 10. 1139/b76-259.

[97] D.C. Whitehead, H. Dibb, R.D. Hartley, Phenolic compounds in soil as influenced by the growth of different plant species, J. App. Ecol. 19 (1982) 579-588. doi: 10. 2307/2403490.

[98] F.A. Al-Naib, E.L. Rice, Allelopathic effects of Plantanus occidentalis, Bull. Torrey Bot. Club 98 (1971) 75-82. doi: 10. 2307/2483770.


[99] J. Kawabata, 8-methylsulfinyloctyl isothiocyanate as allelochemical candicate from Rorippa sylvestris Besser, Agric. Biol. Chem. 53 (1989) 3361-3362. doi: 10. 1271/bbb1961. 53. 3361.


[100] A. Yamane, J. Fujikura, H. Ogawa, J. Mizutani, Isothiocyanates as allelopathic compounds from Rorippa indica Hiern (Cruciferae) roots, J. Chem. Ecol. 18 (1992) 1941-1954. doi: 10. 1007/BF00981918.


[101] F.A. Einhellig, J.A. Rasmussen, Allelopathic effects of Rumex crispus on Amaranthus retroflexus, grain sorghum and field corn, Am. Midl. Nat. 90 (1973) 79-86. doi: 10. 2307/2424268.

[102] M.A.K. Lodhi, Germination and decreased growth of Kochia scoparia in relation to its autoallelopathy, Can. J. Bot. 57 (1979) 1083-1088. doi: 10. 1139/b79-132.

[103] H.H. Li, Allelopathy of Sasa cernua, J. Chem. Ecol. 18 (1992) 1785-1796. doi: 10. 1007/BF02751103.

[104] J.A. Rassmussen, E.L. Rice, Allelopathic effects of Sporobolus pyramidatus on vegetational patterning, Am. Midl. Nat. 86 (1971) 309-326. doi: 10. 2307/2423626.

[105] A.S. Abdul-Wahab, E.L. Rice, Plant inhibition by Johnson grass and its possible significance in old field succession, Bull. Torrey Bot. Club 94 (1967) 486-497. doi: 10. 2307/2483566.

[106] M. An, J.E. Pratley, T. Haig, Allelochemical dynamic of decaying Vulpia residues, and their corresponding biological activity, in: R.M. King, H. Robinson (Eds. ), Second world congress on allelopathy: critical analysis and future prospect. Lakehead University, Thunder Bay, Ontario, Canada, Abstract no 5, (1999).

[107] Inam, F. Hussain, F. Bano, Allelopathic effects of Pakistani weeds: Xanthium strumarium L., Pak. J. Sci. Ind. Res. 30 (1987) 530-533.

[108] G. Grumer, The role of toxic substances in the interrelationships between higher plants, in: F.L. Milthorpe (Ed. ), Mechanisms in biological bompetition. New York, Academic Press, 1961, pp.219-228.

[109] J. Friedman, Allelopathy in desert ecosystems, in: G.R. Waller (Ed. ), Allelochemicals: Role in Agriculture and Forestry, ACS Symposium Series 330. Washington, DC, American Chemical Society, 1987, pp.53-68. doi: 10. 1021/bk-1987-0330. ch006.

[110] S.C. Datta, K.N. Ghosh, Allelopathy in 2 species of Chenopodium inhibition of germination and seedling growth of certain weeds. Acta. Soc. Bot. Pol. 56 (1987) 257-270. doi: 10. 5586/asbp. 1987. 025.


[111] S.C. Datta, S.D. Chakarbarti, Allelopathy in Clerodendrum viscosum: Inhibition of mustard (Brassica) germination and seedling growth, Comp. Physiol. Ecol. 7 (1982) 1-7.

[112] K. Komai, K. Ueki, Chemical properties and behavior of polyphenolic substances in purple nutsedge (Cyperus rotundus L. ), Weed Res. 20 (1975) 66-71.


[113] Zhou, Chemical constituents of the essential oils of wild oat and crabgrass and their effects on the growth and allelochemical production of wheat. Weed Biol. Manag. 13 (2013) 62-69. doi: 10. 1111/wbm. 12010.

[114] W.H. Muller, C.H. Muller, Volatile growth inhibitors produced by Salvia species. Bull. Torrey Bot. Club 91 (1964) 327-330. doi: 10. 2307/2483297.


[115] C.H. Muller, W.H. Muller, B.L. Haines, Volatile growth inhibitors produced by shrubs, Sci. 143 (1964) 471-473. doi: 10. 1126/science. 143. 3605. 471.

[116] J.V. Lovett, Allelopathic potential of Datura stramonium L. (Thorn-apple), Weed Res. 21 (1981) 165-170. doi: 10. 1111/j. 1365-3180. 1981. tb00112. x.

[117] J.V. Lovett, W.C. Potts, Primary effects of allelochemicals of Datura stramonium L., Plant Soil 98 (1987) 137-144. doi: 10. 1007/BF02381734.

[118] G.R. Waller, H. Burstrom, Diterpenoid alkaloids as plant growth inhibitors, Nature 222 (1969) 576-578. doi: 10. 1038/222576a0.

[119] S. Del Amo, A.L. Anaya, Effect of some sesquiterpene lactones on the growth of certain secondary topical specie, J. Chem. Ecol. 4 (1978) 305-313. doi: 10. 1007/BF00989339.

[120] L.J. Locken, R.G. Kelsey, Cnicin concentrations in Centaurea maulosa spotted knapweed. Biochem. Syst. Ecol. 15 (1987) 313-320. doi: 10. 1016/0305-1978(87)90005-6.

[121] K.L. Stevens, G.B. Merrill, Sesquiterpene lactones and allelochemicals from Centaurea, in: A.C. Thompson (Ed. ), The Chemistry of Allelopathy. Washington DC, American Chemical Society, 1985, pp.83-98. doi: 10. 1021/bk-1985-0268. ch006.


[122] J.B. Gressel, L.G. Holm, Chemical inhibition of crop germination by weed seeds and nature of inhibition by Abutilon theophrasti, Weed Res. 4 (1964) 44-53. doi: 10. 1111/j. 1365-3180. 1964. tb00266. x.

[123] Inderjit, K.M.M. Dakshini, Investigation of some aspects of chemical ecology of cogongrass, Imperata cylindrica (L. ) Beauv., J. Chem. Ecol. 17 (1991) 343-352. doi: 10. 1007/BF00994337.

[124] G. Aliota, Germination of radish (Raphanus sativus L. ) seeds in presence of rue (Ruta graveolens L. ) infusion: a cellular perspective, in: R.M. King, H. Robinson (Eds. ), Second world congress on allelopathy: critical analysis and future prospect. Lakehead University, Thunder Bay, Ontario, Canada, Abstract no. 47, (1999).

[125] C.J. Avers, R.H. Goodwin, Studies on roots. IV. Effects of coumarin and scopoletin on the standard root growth pattern of Phleumpratense, Am. J. Bot. 43 (1956) 61-620. doi: 10. 2307/2438877.

[126] S.C. Datta, A.K. Chatterjee, Allelopathy, in Polygoum orientale: inhibition of seed germination and seedling growth of mustard, Comp. Physiol. Ecol. 5 (1980) 54-59.

[127] Gajic, Study of the quantitative and qualitative improvement of wheat yield through agrostemin as an allelopathic factor, Fragmenta Herbologica Jugoslavica 63 (1976) 1-5.

[128] D.T. Bell, C.H. Muller, Dominance of California annual grassland by Brassica nigra, Am. Midl. Nat. 90 (1973) 277-299. doi: 10. 2307/2424453.

[129] S.C. Datta, S.P. Sinha-Roy, Phytotoxic effects of Croton bonplandianum Baill. on weedy associates, Vegetatio. 30 (1975) 157-163. doi: 10. 1007/BF02389704.


[130] M. Inoue, Allelochemical from Polygnum sachalinese FR. Schm. (Polygonaceae), J. Chem. Ecol. 18 (1992) 1833-1840. doi: 10. 1007/BF02751107.

[131] J.V. Lovett, J.A. Lynch, Studies of Salvia reflexa Hornem. 1. Possible competitive mechanisms, Weed Res. 19 (1979) 351-357. doi: 10. 1111/j. 1365-3180. 1986. tb00707. x.

[132] C.S. Tang, C.K. Wat, G.H.N. Towers, Thiophenes and benzofurans in the undisturbed rhizosphere of Tagetes patula L., Plant Soil 98 (1987) 93-97. doi: 10. 1007/BF02381730.

[133] D.T. Patterson, Allelopathy, in: N.D. Camper (Ed. ), Research Methods in Weed Science, 3rd edn. Champain, IL: Southern Weed Science Society, 1986, pp.111-134.

[134] H.K. Abbas, T. Tanaka, S.O. Duke, C.D. Boyette, Susceptibility of various crop and weed species to AAL-toxin, a natural herbicide, Weed Technol. 9 (1995) 125-130.

[135] D.R. Batish, Studies on herbicidal activity of parthenin - a constituent of Parthenium hysterophorus towards bill-goat weed, Curr. Sci. 73 (1997) 369-371.

[136] S. Dmitrovic, Morpho-histological and bioherbicidal evaluation of wild-type and transformed hairy roots of goosefoot, South. Afr. J. Bot. 96 (2015) 53-61. doi: 10. 1016/j. sajb. 2014. 11. 002.

[137] T.D. Xuan, S. Tawata, T.D. Khanh, I.M. Chung, Biological control of weeds and plant pathogens in paddy rice by exploiting plant allelopathy: an overview, Crop Prod. 24 (2005) 197-206. doi: 10. 1016/j. cropro. 2004. 08. 004.


[138] W. Wang, X.R. Zhu, W.Z. Liu, Influence of ragweed (Ambrosia trifida) on plant parasitic nematodes, J. Chem. Ecol. 24 (1998) 1707-1714. doi: 10. 1023/A: 1020824813741.

[139] W.G. Liang, M.D. Huang, R.J. Prokopy, Influence of citrus orchard ground cover plants on arthropod communities in China: a review, Agri. Eco. Environ. 50 (1994) 29-37. doi: 10. 1016/0167-8809(94)90122-8.

Show More Hide
Cited By:

[1] I. Castillejo-González, A. de Castro, M. Jurado-Expósito, J. Peña, A. García-Ferrer, F. López-Granados, "Assessment of the Persistence of Avena sterilis L. Patches in Wheat Fields for Site-Specific Sustainable Management", Agronomy, Vol. 9, p. 30, 2019


[2] M. Hsueh, C. Fan, W. Chang, "Allelopathic Effects of Bidens pilosa L. var. radiata Sch. Bip. on the Tuber Sprouting and Seedling Growth of Cyperus rotundus L.", Plants, Vol. 9, p. 742, 2020


[3] S. BOONMEE, P. SUWITCHAYANON, R. KRUMSRI, H. KATO-NOGUCHI, "Investigation of the Allelopathic Potential of Nephrolepis cordifolia (L.) C. Presl against Dicotyledonous and Monocotyledonous Plant Species", Environment Control in Biology, Vol. 58, p. 71, 2020


[4] A. Novakoski, É. Coelho, G. Ravagnani, A. Costa, S. Rocha, V. Zucareli, A. Lopes, "Allelopathic Potential of Plant Aqueous Mixtures on Euphorbia heterophylla", Agriculture, Vol. 10, p. 449, 2020

Show More Hide