Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILNS > Volume 55 > Cretaceous-Paleogene Boundary Clays from Spain and...
< Back to Volume

Cretaceous-Paleogene Boundary Clays from Spain and New Zealand: Arsenic Anomaly and the Deccan Traps

Full Text PDF

Abstract:

High arsenic (As) contents have been reported in numerous Cretaceous-Paleogene boundary (KPB) clays worldwide including that from Spain (at Caravaca and Agost) and N. Zealand (at Woodside Creek). The Deccan Traps (India) enormous volcanism is one of the interpretations which have been offered to explain this anomaly. This report shows that the estimated surface densities of As in the boundary clays in Spain and New Zealand strongly contradict that anomalous As was sourced by this volcanic event.

Info:

Periodical:
International Letters of Natural Sciences (Volume 55)
Pages:
1-8
Citation:
P. I. Premović, "Cretaceous-Paleogene Boundary Clays from Spain and New Zealand: Arsenic Anomaly and the Deccan Traps", International Letters of Natural Sciences, Vol. 55, pp. 1-8, 2016
Online since:
June 2016
Export:
Distribution:
References:

[1] L. W. Alvarez, W. Alvarez, W., F. Asaro, F and H. V. Michel, Extraterrestrial cause for the Cretaceous-Tertiary extinction, Science 208 (1980) 1095-1108.

DOI: https://doi.org/10.1126/science.208.4448.1095

[2] J. Smit, J. and J. Hertogen, An extraterrestrial event at the Cretaceous-Tertiary boundary, Nature 285 (1980) 98-200.

DOI: https://doi.org/10.1038/285198a0

[3] P. Clayes, W. Kiesling, W. Alvarez, Distribution of Chicxulub ejecta at the Cretaceous-Tertiary boundary, Geol. Soc. Am. Spec. 356 (2002) 55-69.

[4] A. Shukolyukov and G. W. Lugmair, Isotopic evidence for the Cretaceous-Tertiary impactor and its type, Science 282 (1998) 927-930.

DOI: https://doi.org/10.1126/science.282.5390.927

[5] P. I. Premović, Experimental evidence for the global acidification of surface ocean at the Cretaceous-Paleogene boundary: the biogenic calcite-poor spherule layers, Intern. J. Astrobiol. 8 (2009) 193–206.

DOI: https://doi.org/10.1017/s1473550409990139

[6] P. I. Premović, Distal impact, layers and global acidification of ocean water at the Cretaceous–Paleogene boundary (KPB), Geochem. Intern. 49 (2011) 55-65.

DOI: https://doi.org/10.1134/s0016702911010095

[7] S. Donaldson, A. R. Hildebrand, The global fluence of iridium at the Cretaceous-Tertiary boundary. Meteorit. Planet. Sci. 36 (supplement) (2001), abstract A50.

[8] F. T. Kyte, Primary mineralogical and chemical characteristics of the major K/T and Late Eocene impact deposits, Proc. Am. Geophys. Union (2004) #B33C-0272.

[9] A. R. Hildebrandt, W. V. Boynton, Geochemical evidence for atmospheric processing by the Cretaceous/Tertiary boundary impact, Bull. Am. Astron. Soc. 21 (1989) 973.

[10] Hildebrand A. R. Geochemistry and stratigraphy of the Cretaceous/ Tertiary boundary impact ejecta. Ph. D. thesis, University of Arizona, 1992, p.358.

[11] P. I. Premović, Cretaceous-Paleogene boundary clays from Spain and New Zealand: Arsenic Anomalies, Open Geosci. 1 (2015) 721-731.

DOI: https://doi.org/10.1515/geo-2015-0052

[12] I. Gilmour, E. Anders, Cretaceous-Tertiary boundary event: Evidence for a short time scale, Geochim. Cosmochim. Acta 53 (1989) 503-511.

DOI: https://doi.org/10.1016/0016-7037(89)90401-8

[13] C. B. Officer, C. L. Drake, Terminal Cretaceous environmental events, Science 227 (1985) 1161-1167.

[14] P. N. Shukla, N. Bhandari, A. Das, A. D. Shukla, J. S. Ray, High iridium concentration of alkaline rocks of Deccan and implications to K/T boundary, Proc. Indian Acad. Sci.: Earth Planet. Sci. 110 (2001) 103-110.

DOI: https://doi.org/10.1007/bf02702211

[15] G. Keller G, T. Adatte, P. K. Bhowmick, H. Upadhyay, A. Dave, A. N. Reddy, B. C. Jaiprakash, Nature and timing of extinctions in Cretaceous-Tertiary planktic forminifera preserved in Deccan intertrappean sediments of the Krishna-Godavari Basin, India, Earth Planet. Sci. Lett. V (2012).

DOI: https://doi.org/10.1016/j.epsl.2012.06.021

[16] A. L. Chenet, X. Quidelleur, F. Fluteau, V. Courtillot, 40K-40Ar geochronological dating of the Main Deccan province and synthesis: a short duration of a giant emplacement, Earth Planet. Sci. Lett. 263 (2007) 1-15.

DOI: https://doi.org/10.1016/j.epsl.2007.07.011

[17] G. Keller, A. Sahni, S. Bajpai, Deccan volcanism, the KT mass extinction and dinosaurs, J. Biosci. 34 (2009) 709-728.

DOI: https://doi.org/10.1007/s12038-009-0059-6

[18] A. L. Chenet, F. Fluteau, V. Courtillot, M. Gérard, S. K. Subbarao, Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: Results from a 1200-m-thick section in the Mahabaleshwar escarpment. J. Geophys. Res. 113 (2008).

DOI: https://doi.org/10.1029/2006jb004635

[19] P. B. Wignall, Large igneous provinces and mass extinctions, Earth-Sci. Rev. 53 (2001) 1-33.

[20] V. Courtillot, F. Fluteau, Cretaceous Extinctions: the volcanic hypothesis, Science 328 (2010) 973-974.

DOI: https://doi.org/10.1126/science.328.5981.973-b

[21] D. Chilvers, P. J. Peterson, Global cycling of arsenic, in: T. C. Hutchinson, K. M. Meema (Eds. ), Lead, Mercury, Cadmium and Arsenic in the Environment, Wiley, New York, 1987, pp.279-301.

[22] B. Schmitz, Origin of microlayering in worldwide distributed Ir-rich marine Cretaceous/Tertiary boundary clays, Geology 16 (1988) 1068-1072.

DOI: https://doi.org/10.1130/0091-7613(1988)016<1068:oomiwd>2.3.co;2

[23] J. Smit, Meteorite impact, extinctions and the Cretaceous-Tertiary boundary, Geol. Mijnbouw 69 (1990) 187-204.

[24] E. Molina, L. Alegret, I. Arenillas, J. A. Arz, The Cretaceous/Paleogene boundary at the Agost section revisited: paleoenvironmental reconstruction and mass extinction pattern, J. Iber. Geol. 31 (2005) 135-148.

[25] H. Palme, H. St. O'Neill, Cosmochemical estimates of mantle composition, in: H. D. Holland, K. K. Turekian (Eds. ), Treatise on Geochemistry, Elsevier, Amsterdam, 2004, pp.1-38.

DOI: https://doi.org/10.1016/b0-08-043751-6/02177-0

[26] J. A. Garland, Dry deposition of small particles to grass in field conditions, in: H. Pruppacher (Ed. ), Precipation Scavenging, Dry Deposition and Resuspension, Elsevier, Amsterdam, 1983, pp.849-858.

[27] J. Müller, Invariant properties of yhe atmospheric aerosol, J. Aerosol Sci. 17 (1986) 277-282.

[28] W. H. Schroeder, M. Dobson, D. M. Kane, N. D. Johnson, Toxic trace elements associated with airborne particulate matter: a review, J. Air Pollut. Control Assoc. 37 (1987) 1267-1285.

DOI: https://doi.org/10.1080/08940630.1987.10466321

[29] J. Matschullat, Arsenic in the geosphere: a review, Sci. Total Environ. 249 (2000) 297-312.

[30] C. P. Strong, R. R. Brooks, S. M. Wilson, R. D. Reeves, C. J. Orth, X. Mao, L. R. Quintana, E. Anders, A new Cretaceous/Tertiary boundary site at Flaxbourne River, New Zealand: biostratigraphy and geochemistry, Geochim. Cosmochim. Acta 51 (1987).

DOI: https://doi.org/10.1016/0016-7037(87)90156-6

[31] J. W. Morgan, Lonar crater glasses and high-magnesium australites-Trace element volatilization and meteoritic contamination. Proc. 9th Lunar Planet. Sci. Conf. (1978) pp.2713-2730.

[32] I. Olmez, D. L. Finnegan, W. H. Zoller, Iridium emissions from Kilauea Volcano. J. Geophys. Res. 91 (1986) 653–663.

DOI: https://doi.org/10.1029/jb091ib01p00653

[33] S. E. Bryan, Silicic large igneous provinces, Episodes 30 (2007) 20–31.

[34] S. Self, The effects and consequences of very large explosive volcanic eruptions, Philos. Trans. Royal Soc. Series A 364 (2006) 2073–(2097).

[35] B. A. Black, L. T. Elkins-Tanton, M. C. Rowe, I. U. Peate, Magnitude and consequences of volatile release from the Siberian Traps, Earth Planet. Sci. Lett. 317-318 (2012) 363–373.

DOI: https://doi.org/10.1016/j.epsl.2011.12.001

[36] N. Bhandari, P. N. Shukla, Y. G. Ghevariya, S. M. Sundaram, K/T boundary layer in Deccan intertrappeans at Anjar Kutch, Geol. Soc. Am. Spec. Paper 307 (1996) 417-424.

DOI: https://doi.org/10.1130/0-8137-2307-8.417

[37] B. Gertsch, G. Keller G, T. Adatte, D. Bartels, Platinum group element (PGE) geochemistry of Brazos sections: Texas, USA, Sediment. Geol. (SEPM) Spec. Publ. No. 100 (2011) 227-249.

DOI: https://doi.org/10.2110/sepmsp.100.227

[38] S. Osae, S. Misra, C. Koeberl, D. Sengupta, S. Ghosh, Target rocks, impact glasses, and melt rocks from the Lonar impact crater, India: Petrography and geochemistry, Meteorit. Planet. Sci. 40 (2005) 1473–1492.

DOI: https://doi.org/10.1111/j.1945-5100.2005.tb00413.x

[39] W. H. Zoller, J. R. Parrington, J. M. Kotra, Iridium enrichment in airborne particles from Kilauea volcano, Science 222 (1983) 1118-1120.

DOI: https://doi.org/10.1126/science.222.4628.1118

[40] D. L. Finnegan, T. L. Miller, W. H. Zoller, Iridium and other trace-metal enrichments from Hawaiian volcanoes, Geol. Soc. Am. Spec. Paper 247 (1990) 111-116.

[41] T. A. Mather, D. M. Pyle, C. Oppenheimer, Tropospheric Volcanic Aerosol, in: A. Robock, C. Oppenheimer (Eds. ), Geophysical Monograph 139, Am. Geophys. Union, Washington, 2003, pp.189-212.

DOI: https://doi.org/10.1029/139gm12

[42] G. Sen, D. Chandrasekharam, Deccan Traps flood basalt province: an evaluation of the thermochemical plume model, J. Ray, G. Sen, B. Ghosh et al. (Eds. ), Topics in Igneous Petrology, Springer, Berlin, 2011, pp.29-53.

DOI: https://doi.org/10.1007/978-90-481-9600-5_2

[43] M. S. Quinby-Hunt, K. K. Turekian, Distribution of elements in sea water, EOS Trans. Am. Geophys. Union 64 (1983) 130-132.

DOI: https://doi.org/10.1029/eo064i014p00130
Show More Hide
Cited By:
This article has no citations.