Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILNS > Volume 54 > Antioxidant Capacity and Phenolic Contents of...
< Back to Volume

Antioxidant Capacity and Phenolic Contents of Three Quercus Species

Full Text PDF


The antioxidant capability and phenolic contents of ethanol extracts (free phenolics) and ethyl acetate extracts (bound phenolics) of three Quercus species were estimated in this work. The antioxidant activities were examined by 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) free radical, reducing power and b-carotene bleaching methods. HPLC was employed to detect major phenolic acids. The leaf extract of Q. salicina contained maximum total phenolics while the highest total flavonoid content was found in the leaf extract of Q. serrata. The antioxidant activities varied among three species. Bark extract of Q. salicina was the most potential and it was closed to levels of the standard antioxidative dibutyl hydroxytoluene (BHT). The bark extract of Q. serrata also showed promising antioxidant activities despite their eminence was negligibly lower than Q. salicina. Stronger antioxidant activities of free phenolics than those of the bound phenolics may be attributed to higher quantities of free phenolics in the barks of Quercus species, however total flavonoids may not contribute a critical role. By HPLC analysis, thirteen phenolic acids were detected in the leaf and bark extracts. Of them, Q. salicina showed maximum in number (ten compounds) and quantities of detected phenolic acids. Ellagic, chlorogenic and benzoic acids were dominant in Quercus species. Findings of this study revealed that leaves and barks of three Quercus species are rich source of antioxidants, and Q. salicina is the most promising and should be elaborated to exploit its pharmaceutical properties.


International Letters of Natural Sciences (Volume 54)
P. T. Tuyen et al., "Antioxidant Capacity and Phenolic Contents of Three Quercus Species", International Letters of Natural Sciences, Vol. 54, pp. 85-99, 2016
Online since:
May 2016

[1] M. Bouras, M. Chadni, F.J. Barba, N. Grimi, O. Bals, E. Vorobiev, Optimization of microwave-assisted extraction of polyphenols from Quercus bark, Ind. Crop. Prod. 77 (2015) 590-601.

DOI: 10.1016/j.indcrop.2015.09.018

[2] R. Singh, N. Kumari, Comparative determination of phytochemicals and antioxidant activity from leaf and fruit of Sapindus mukorrossi Gaertn. – Avaluable medicinal tree, Ind. Crop. Prod. 73 (2015) 1-8.

DOI: 10.1016/j.indcrop.2015.04.012

[3] C. Ao, A. Li, A. A, Elzaawely, T. D Xuan, S. Tawata. Evaluation of antioxidant and antibacterial activities of Ficus microcarrpa L. fil. Extract, Food Control. 19(10) (2008) 940-948.

DOI: 10.1016/j.foodcont.2007.09.007

[4] A. Michalak, Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress, Pol. J. Environ. Stud. 15(4) (2006) 523-530.

[5] C. D Stalikas, Extraction, separation, and detection methods for phenolic acids and flavonoids, J. Sep. Sci. 30(18) 2007 3268-3295.

DOI: 10.1002/jssc.200700261

[6] S. Otles, I. Selek, Phenolic compounds and antioxidant activities of chestnut (Castanea sativa Mill. ) fruits, Qual. Assur. Saf. Crop. 4(4) 2012 199-105.

DOI: 10.1111/j.1757-837x.2012.00180.x

[7] C.A. Rice-Evans, N.J. Miller, G. Paganga, Antioxidant properties of phenolic compound, Trends Plant Sci. 2(4) (1997) 152-159.

[8] J.C. M Barreira, I.C.F. R Ferreira, M.B.P. P Oliveira, J.A. Pereira, Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit, Food Chem. 107(3) 2008 1106-1113.

DOI: 10.1016/j.foodchem.2007.09.030

[9] R. Apak, K. Güçlü, B. Demirata, M. Özyürek, S.E. Çelik, B. Bektaşoğlu, K.I. Berker, D. Özyurt, Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay, Molecules 12(7) (2007).

DOI: 10.3390/12071496

[10] A. A. Elzaawely, T.D. Xuan, S. Tawata, Essential oils, kava pyrones and phenolic compounds from leaves and rhizomes of Alpinia zerumbet (Pers. ) B.L. Burtt. & R.M. Sm. and their antioxidant activity, Food Chem. 103(2) (2007) 486-494.

DOI: 10.1016/j.foodchem.2006.08.025

[11] A.W. Indrianingsih, S. Tachibana, R. T. Dewi, K. Itoh, Antioxidant and a-glucosidase inhibitor activities of natural compounds isolated from Quercus gilva Blume leaves, Asian Pac. J. Trop. Biomed. 5(9) (2015) 748-755.

DOI: 10.1016/j.apjtb.2015.07.004

[12] W.S. Judd, C.S. Campbell, E.A. Kellogg, P.F. Stevens, M.J. Donoghue, Plant systematics A phylogenetic approach. 2nd ed. Sinauer Associates, Inc. Publishers, Sunderland, Masachusetts U.S. A, (2002).

DOI: 10.1080/10635150490445878

[13] J.A. Sanchez-Burgosa, M.V. Ramirez-Maresb, M.M. Larrosac, J.A. Gallegos-Infantea, R.F. Gonzalez-Laredoa, L. Medina-Torresd, N.E. Rocha-Guzmana, Antioxidant, antimicrobial, antitopoisomerase and gastroprotective effect ofherbal infusions from four Quercus species, Ind. Crop. Prod. 42 (2013).

DOI: 10.1016/j.indcrop.2012.05.017

[14] Z.A. Kuliev, A.D. Vdovin, N.D. Abdullaev, A.B. Makhmatkulov, V.M. Malikov, Study of the catechins and proanthocyanidins of Quercus robur, Chem. Nat. Compd. 33(6) (1997) 642-652.

DOI: 10.1007/bf02249631

[15] M. Bouras, M. Chadni, F.J. Barba, N. Grimi, O. Bals, E. Vorobiev, Optimization of microwave-assisted extraction of polyphenols from Quercus bark, Ind. Crop. Prod. 77 (2015) 590-601.

DOI: 10.1016/j.indcrop.2015.09.018

[16] J.I. Kim, H. h. Kim, S. Kim, K.T. Lee, I.H. Ham, W.K. Whang, Antioxidative compounds from Quercus salicina Blume stem, Arch. Pharm. Res. 31(3) (2008) 274-78.

DOI: 10.1007/s12272-001-1152-2

[17] C.C. Shen, K.Y. Hong, J. Chen, L.J. Zhang, Z.H. Lin, H.T. Huang, H.L. Cheng, Y.H. Kuo, Antioxidant and anti-nitric oxide components from Quercus glauca, Chem. Pharm. Bull. 60(7) (2012) 924-929.

DOI: 10.1248/cpb.c12-00174

[18] K. Iwatsuki, D.E. Boufford, DE, H. Ohba, Flora of Japan Vol II, Angiospermae Dicotyledoneae Archichlamydeae (a). Kodansha Ltd., 12-21 Otowa 2-chome, Bunkyo-ku, Tokyo 112-8001, Japan, (2006).

[19] K. Maeto, K. Ozaki, Prolonged diapause of specialist seed-feeders makes predator satiation unstable in masting of Quercus crispula, Oecologia 137 (2003) 392-398.

DOI: 10.1007/s00442-003-1381-6

[20] H. Sasamoto, Y. Hosoi. Callus proliferation from the protoplasts of embryogenic cells of Quercus serrata, Plant Cell Tiss. Org. 29 (1992) 241-245.

DOI: 10.1007/bf00034359

[21] M. T. Moriyama, K. Suga, K. Miyazawa, T. Tanaka, M. Higashioka, K. Noda, M. Oka, M. Tanaka, K. Suzuki, Inhibitions of urinary oxidative stress and renal calcium level by an extract of Quercus salicina Blume/Quercus stenophylla Makino in a rat calcium oxalate urolithiasis model, Int. J. Urol. 16(4) (2009).

DOI: 10.1111/j.1442-2042.2009.02268.x

[22] T.D. Xuan, E. Tsuzuki, H. Terao, M. Matsuo, T.D. Khanh, Correlation between growth inhibitory exhibition and suspected allelochemicals (Phenolic compounds) in the extract of Alfalfa (Medicago sativa L. ), Plant Prod. Sci. 6(3) (2003) 165-171.

DOI: 10.1626/pps.6.165

[23] F. Medini, H. Fellah, R. Ksouri, C. Abdelly, Total phenolic, flavonoid and tannin contents and antioxidant and antimicrobial activities of organic extracts of shoots of the plant Limonium delicatulum, Journal of Taibah University for Science. 8(3) (2014).

DOI: 10.1016/j.jtusci.2014.01.003

[24] A. Djeridane, M. Yousfi, B. Nadjemi, D. Boutassouna, P. Stocker, N, Vidal. Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds, Food Chem. 97(4) (2006) 654-660.

DOI: 10.1016/j.foodchem.2005.04.028

[25] R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C.A. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic. Biol. Med. 26(9–10) (1999) 1231-1237.

DOI: 10.1016/s0891-5849(98)00315-3

[26] A.A. Elzaawely, S. Tawata, Antioxidant capacity and phenolic content of Rumex dentatus L. grown in Egypt, J. Crop Sci. Biotechnol. 15(1) (2012) 59-64.

DOI: 10.1007/s12892-011-0063-x

[27] Z. L. Yu, H.X. Gao, Z. Zhang, H. He, Q. He, L.R. Jia, W.C. Zeng, Inhibitory effects of Ligustrum robustum (Roxb. ) Blume extract on α-amylase and α-glucosidase, J. Funct. Foods 19 (2015) 204-213.

DOI: 10.1016/j.jff.2015.09.048

[28] T.K. Hyun, H.C. Kim, Y.J. Ko, J.S. Kim, Antioxidant, ∝-glucosidase inhibitory
and anti-inflammatory effects of aerial parts extract from Korean crowberry (Empetrum nigrum var. japonicum), Saudi Journal of Biological Sciences (2015).

DOI: 10.1016/j.sjbs.2015.02.008

[29] S.A.O. Santos, P.C.R.O. Pinto, A.J.D. Silvestre, C.P. Neto, Chemical composition and antioxidant activity of phenolic extracts of cork from Quercus suber L., Ind. Crop. Prod. 31 (2010) 521-526.

DOI: 10.1016/j.indcrop.2010.02.001

[30] B.M. Popović, D. Štajner, R. Ždero, S. Orlović, Z. Galić, Antioxidant characterization of oak extracts combining spectrophotometric assays and chemometrics, The Scientific World Journal (2013).

DOI: 10.1155/2013/134656

[31] J.A. Sanchez-Burgosa, M.V. Ramirez-Maresb, M.M. Larrosac, J.A. Gallegos-Infantea, R.F. Gonzalez-Laredoa, L. Medina-Torresd, N.E. Rocha-Guzmana, Antioxidant, antimicrobial, antitopoisomerase and gastroprotective effect ofherbal infusions from four Quercus species, Ind. Crop. Prod. 42 (2013).

DOI: 10.1016/j.indcrop.2012.05.017

[32] Y. Cai, Q. Luo, M. Sun, H. Corke, Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer, Life Sci. 74 (2004) 2157-2184.

DOI: 10.1016/j.lfs.2003.09.047

[33] N. Saeed, M.R. Khan, M. Shabbir, Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L, Bio. Med. Central. 12 (2012) 221.

DOI: 10.1186/1472-6882-12-221

[34] R.A. Khan, M.R. Khan, S. Sahreen, M. Ahmed, Assessment of flavonoids contents and in vitro antioxidant activity of Launaea procumbens, Chem. Cent. J. 6 (2012) 43.

DOI: 10.1186/1752-153x-6-43

[35] R. Touati, S.A.O. Santos, S.M. Rochac, K. Belhamel, A.J.D. Silvestre, The potential of cork from Quercus suber L. grown in Algeria as a source of bioactive lipophilic and phenolic compounds, Ind. Crop. Prod. 76 (2015) 936-945.

DOI: 10.1016/j.indcrop.2015.07.074

[36] J. Sun, Y.F. Chu, X. Wu, R. H. Liu, Antioxidant and antiproliferative activities of common fruits, J. Agric. Food Chem. 50(25) (2002) 7449-7454.

DOI: 10.1021/jf0207530

[37] N. Dolai, I. Karmakar, R.B.S. Kumar, B. Kar, A. Bala, P.K. Haldar, Free radical scavenging activity of Castanopsis indica in mediating hepatoprotective activity of carbon tetrachloride intoxicated rats, Asian Pac. J. Trop. Biomed. 2(1) (2012).

DOI: 10.1016/s2221-1691(12)60168-3

[38] F.A.M. Silva, F. Borges, C. Guimarães, J.L.F.C. Lima, C. Matos, S. Reis, Phenolic acids and derivatives: studies on the relationship among structure, radical scavenging activity, and physicochemical parameters, J. Agric. Food Chem. 48(6) (2000).

DOI: 10.1021/jf9913110

[39] E. Bendary, R.R. Francis, H.M.G. Ali, M.I. Sarwat, S. El Hady, Antioxidant and structure–activity relationships (SARs) of some phenolic and anilines compounds, Ann. Agri. Sci. 58(2) (2013) 173-181.

DOI: 10.1016/j.aoas.2013.07.002

[40] D.T. Khang, T.N. Dung, A.A. Elzaawely, T.D. Xuan, Phenolic profiles and antioxidant activity of germinated legumes, Foods 5 (2016) 27.

DOI: 10.3390/foods5020027

[41] J. Chompoo, A. Upadhyay, M. Fukuta, S. Tawata, Effect of Alpinia zerumbet components on antioxidant and skin diseases-related enzymes, BMC Complement Altern. Med. 12 (2012) 106.

DOI: 10.1186/1472-6882-12-106

[42] Q.D. Do, A.E. Angkawijaya, P. L Tran-Nguyen, L.H. Huynh, F.E. Soetaredjo, S. Ismadji, Y.H. Ju, Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatic, J. Food Drug Anal. 22(3) (2014).

DOI: 10.1016/j.jfda.2013.11.001

[43] E. Bursal, E. Köksal, Evaluation of reducing power and radical scavenging activities of water and ethanol extracts from sumac (Rhus coriaria L. ), Food Res. Int. 44(7) (2011) 2217-2221.

DOI: 10.1016/j.foodres.2010.11.001

[44] A. Indrianingsih, S. Tachibana, K. Itoh, In vitro evaluation of antioxidant and α-glucosidase inhibitory assay of several tropical and subtropical plants, Procedia Environ. Sci. 28 (2015b) 639-648.

DOI: 10.1016/j.proenv.2015.07.075

[45] L. Barros, M.J. Ferreira, B. Queirós, I.C.F.R. Ferreira, P. Baptista, Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities, Food Chem. 103(2) (2007) 413-419.

DOI: 10.1016/j.foodchem.2006.07.038

[46] J.C.M. Barreira, I.C.F.R. Ferreira, M.B.P.P. Oliveira, J.A. Pereira, Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit, Food Chem. 107 (2008) 1106-1113.

DOI: 10.1016/j.foodchem.2007.09.030

[47] L. Custódio, J. Patarra, F. Alberício, N. da Rosa Neng, J.M.F. Nogueira, A. Romano, Phenolic composition, antioxidant potential and in vitro inhibitory activity of leaves and acorns of Quercus suber on key enzymes relevant for hyperglycemia and Alzheimer's disease, Ind. Crop. Prod. 64 (2015).

DOI: 10.1016/j.indcrop.2014.11.001

[48] L. Sepúlveda, A. Ascacio, R. Rodríguez-Herrera, A. Aguilera-Carbó, C.N. Aguilar, Ellagic acid: Biological properties and biotechnological development for production processes, Afr. J. Biotechnol. 10(22) (2011) 4518-4523.

DOI: 10.1002/chin.201250260

[49] N.L. Chaitra, R.V. Raivishankar, Anti-HIV-1 Activity of Ellagic acid isolated from Terminalia paniculata, Free Rad Antiox. 6(1) (2016) 101-108.

DOI: 10.5530/fra.2016.1.12

[50] A. Fernandes, I. Fernandes, L. Cruz, N. Mateus, M. Cabral, V. de Freitas, Antioxidant and bological properties of bioactive phenolic compounds from Quercus suber L, J. Agric. Food Chem. 57(23) (2009) 11154-11160.

[51] R. Niggeweg, A.J. Michael, C. Martin, Engineering plants with increased levels of the antioxidant chlorogenic acid, Nat. Biotechnol. 22(6) (2004) 746-754.

[52] A.V. Qualley, J.R. Widhalm, F. Adebesin, C.M. Kish, N. Dudareva, Completion of the core β-oxidative pathway of benzoic acid biosynthesis in plants, PNAS. 109(40) (2012) 16383–16388.

DOI: 10.1073/pnas.1211001109

[53] J.R. Widhalm, N.A. Dudareva, A familiar ring to it: Biosynthesis of plant Benzoic acids, Molecular Plant. 8(1) (2015) 83-97.

Show More Hide