Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILNS > Volume 54 > Effect of Bergenin on the Kidney of C57BL/6J Mice...
< Back to Volume

Effect of Bergenin on the Kidney of C57BL/6J Mice with High Fat-Diet Induced Oxidative Stress

Full Text PDF

Abstract:

The present study evaluated the protective effect of bergenin on high fat diet (HFD) induced diabetic mice. C57BL/6J mice were segregated in two groups, one fed standard diet (NC) and the other fed HFD for 16 weeks. Mice were fed continuously with high fat diet for 16 weeks and subjected to intragastric administration of bergenin (10, 20 and 40 mg/kg body weight (BW)), metformin (25 mg/kg BW) 9 to 16 weeks. At the end of the treatment nephritic markers, lipid peroxidation product, antioxidant and histopathological examination were carried out to assess the efficacy of the treatment. HFD fed mice showed increased plasma glucose, insulin, altered nephritic markers, antioxidant and histopathological abnormalities. Oral Treatment with bergenin (40 mg/kg BW) showed near normalized levels of plasma glucose, lipid peroxidation product, antioxidants, improved insulin and reduced kidney damage. The effects of bergenin were comparable with standard drug, metformin. These data suggest that bergenin protect kidney from deleterious effect of glucose.

Info:

Periodical:
International Letters of Natural Sciences (Volume 54)
Pages:
58-65
DOI:
10.18052/www.scipress.com/ILNS.54.58
Citation:
S. Ambika and R. Saravanan, "Effect of Bergenin on the Kidney of C57BL/6J Mice with High Fat-Diet Induced Oxidative Stress", International Letters of Natural Sciences, Vol. 54, pp. 58-65, 2016
Online since:
May 2016
Export:
Distribution:
References:

[1] American Diabetes Association, Diagnosis and classification of diabetes mellitus, Diabetes Care. 33 (2010) 62–69.

[2] D. Koya, M. Haneda, S. Inomata, Y. Suzuki, D. Suzuki, H. Makino, et al., Long-term effect of modification of dietary protein intake on the progression of diabetic nephropathy: A randomised controlled trial, Diabetologia. 52 (2009) 2037-45.

DOI: 10.1007/s00125-009-1467-8

[3] T. Zelmanovitz , F. Gerchman, A.P. Balthazar, F.C. Thomazelli, J.D. Matos, L.H. Canani, Diabetic nephropathy, Diabetol Metab Syndr. (2009) 1-10.

DOI: 10.1186/1758-5996-1-10

[4] H.S. Lee, S.K. Ku, Effect of picrorrhiza rhizoma extracts on early diabetic nephropathy in streptozotocin-induced diabetic rats. J Med Food. 11(2008) 294-301.

DOI: 10.1089/jmf.2007.578

[5] B.H. Havsteen, The biochemistry and medical significance of the flavonoids, Pharm Therap. 96 (2002) 67-202.

[6] Y.Y. Soong, P.J. Barlow, Antioxidant activity and phenolic of selected fruit seeds, Food Chem. 88 (2004) 411-417.

DOI: 10.1016/j.foodchem.2004.02.003

[7] V.P. Veerapur, K.R. Prabhakar, B.S. Thippeswamy, P. Bansal, K.K. Srinivasan, M.K. Unnikrishnan, Antidiabetic effect of Ficus racemosa Linn. Stem bark in high-fat diet and low-dose streptozocin- induced type 2 diabetic rats: A mechanistic study, Food Chem. 132 (2012).

DOI: 10.1016/j.foodchem.2011.10.052

[8] H.K. Lim, H.S. Kim, H.S. Choi, S. Oh, J. Choi, Hepatoprotective effects of bergenin, a major constituent of Mallotus japonicus, on carbon tetrachloride-intoxicated rats, J Ethanopharmacol. 72, (2000) 469-474.

DOI: 10.1016/s0378-8741(00)00260-9

[9] M. Arfan, H. Amin, M. Karamac, A. Kosinska, W. Wiczkowski, R. Amarowick, Antioxidant activity of phenolic fractions of Mallotus philippinensis barks extract, Food Sci. 27 (2009) 109-117.

[10] R. Srinivasan, M.J.N. Chandrasekar, M.J. Nanjan, B. Suresh, Antioxidant activity of Caesalpinia digyna root, J Ethnopharmacol. 113(2007) 284–91.

DOI: 10.1016/j.jep.2007.06.006

[11] H.S. Kim, H.K. Lim, M.W. Chang, Y.C. Kim, Antihepatotoxic activity of bergenin, the major constituent of Mallotus japonicus, on carbon tetrachloride-intoxicated hepatocytes. J Ethnopharmacol. 69 (2000) 79–83.

DOI: 10.1016/s0378-8741(99)00137-3

[12] H.L. Pu, X. Huang, J.H. Zhao, A. Hing, Bergenin is the antiarrhythmic principle of Fluggea virosa. Planta Med. 68 (2002) 372–374.

DOI: 10.1055/s-2002-26758

[13] S. Piacente, C. Pizza, N. Detommasi, Constituents of Ardisia japonica and their invitro anti-HIVactivity, J Nat Products. 59 (1996) 565–569.

[14] T. Swarnalakshmi, M.G. Sethuraman, N. Sulochana, R. Arivudainambi, A note on the anti-inflammatory activity of bergenin, Curr Sci. 53(1984) 917.

[15] R. Kumar, D.K. Patel, S.K. Prasad, D. Laloo, S. Krishnamurthy, S. Hemalatha, Type 2 antidiabetic activity of bergenin from the roots of Caesalpinia digyna Rottler, Fitoterapia. 83 (2012) 395–401.

DOI: 10.1016/j.fitote.2011.12.008

[16] P. Trinder, Determination of blood glucose using an oxidase peroxidase system with a non carcinogenic chromogen, J Clin Pathol. 22 (1969)158–161.

DOI: 10.1136/jcp.22.2.158

[17] W. Burgi, M. Briner, N. Franken, A.C.H. Kessler. One step sandwich enzyme immunoassay for insulin using monoclonal antibodies, Clin Biochem. 213, (1998) 11–314.

DOI: 10.1016/s0009-9120(88)80087-0

[18] J.K. Fawcett, J.E. Scott, A rapid and precise method for the determination of urea, J Clin Path. 3 (1960)156–159.

[19] W.T. Caraway, Determination of uric acid in serum by carbonate method, Am J Clin Path. 25 (1955) 840–845.

[20] P. Kakkar, B. Das, P.N. Viswanathan, A modified spectrophotometric assay of superoxide dismutase, Ind J Biochem Biophys. 21(1984)130–132.

[21] A.K. Sinha, Colorimetric assay of catalase, Anal Biochem. 47 (1972) 389–394.

[22] J.T. Rotruck, A.L. Pope, H.E. Ganther, A.B. Swanson, D.G. Hafeman, W.G. Hoekstra. Selenium: biochemical role as a component of glutathione peroxidise, Science. 179 (1973) 588–590.

DOI: 10.1126/science.179.4073.588

[23] G.L. Ellman, Tissue sulfhydryl groups, Arch Biochem Biophys. 82 (1959)70–77.

[24] C.A. Kuether and J.H. Roe, The determination of ascorbic acid in whole blood and urine through the 2, 4-dinitrophenylhydrazine derivative of dehydroascorbic acid, J Biol Chem. 11(1943) 145–164.

[25] H. Baker, O. Frank, B. DeAngelis, S. Feingold, Plasma tocopherol in man at various times after ingesting free or acetylated tocopherol, Nutr Res. 21 (1980) 531–536.

[26] W.G. Niehaus, B. Samuelsson. Formation of malondialdehyde from phospholipid arachidonate during microsomal lipid peroxidation, Eur J Biochem. 6 (1968)126–130.

DOI: 10.1111/j.1432-1033.1968.tb00428.x

[27] Z.Y. Jiang, J.V. Hunt, S.P. Wolff, Ferrous ion oxidation in the presence of xylenol orange for the detection of lipid hydroperoxides in low density lipoprotein, Anal Biochem. 202 (1992) 384–389.

DOI: 10.1016/0003-2697(92)90122-n

[28] G. Reaven, F. Abbasi, T. McLaughlin, Obesity, insulin resistance, and cardiovascular disease, Recent Prog Horm Res. 59 (2004) 207–223.

[29] A. Sundaresan, R. Harini and K.V. Pugalendi, Ursolic acid and rosiglitazone combination alleviates metabolic syndrome in high fat diet fed C57BL/6J mice, Gen. Physiol. Biophys. 31 (2012) 323–333.

DOI: 10.4149/gpb_2012_037

[30] R. Agarwal, N. Vasavada, N.G. Sachs, S. Chase, Oxidative stress and renal injury with intravenous iron in patients with chronic kidney disease, Kidney Int. 65 (2004) 2279–2289.

DOI: 10.1111/j.1523-1755.2004.00648.x

[31] S. Kume, T. Uzu, S. Araki, T. Sugimoto, K. Isshiki, M. Kanasaki, Role of altered renal lipid metabolism in the development of renal injury induced by a high-fat diet, J Am Soc Nephrol. 18 (2007) 2715–2723.

DOI: 10.1681/asn.2007010089

[32] M.L. Bournoville, M. Conti, R. Bazin, O. Michel, J. Bariety, J. Chevalier, Oxidative stress occurs in absence of hyperglycaemia and inflammation in the onset of kidney lesions in normotensive obese rats, Nephrol Dial Transpl. 15(1999) 467–476.

DOI: 10.1093/ndt/15.4.467

[33] M.O. Sim, J.R. Ham, H.I. Lee, K.I. Seo, M.K. Lee, Long-term supplementation of umbelliferone and 4-methylumbelliferone alleviates high-fat diet induced hypertriglyceridemia and hyperglycemia in mice, Chem-Biol Inter. 216 (2014) 9–16.

DOI: 10.1016/j.cbi.2014.03.003

[34] K. Datta, S. Sinha, P. Chattopadhyay, Reactive oxygen species in health and diseases, Natl Med J India, 13(2000) 304–10.

[35] K. Arai, S. Maguchi, S. Fujii, H. Ishibashi, K. Oikawa, N. Taniguchi, Glycation and inactivation of human Cu–Zn-superoxide dismutase, J Biol Chem. 262 (1987) 16969–72.

[36] N. Nazir, S. Koul, M.A. Qurishi, M.H. Najar, M.I. Zargar, Evaluation of antioxidant and antimicrobial activities of Bergenin and its derivatives obtained by chemoenzymatic synthesis, European J Med Chem. 46 (2011) 2415-2420.

DOI: 10.1016/j.ejmech.2011.03.025

[37] E.F. Kern, P. Erhard, W. Sun, S. Genuth, M.F. Weiss, Early urinary markers of diabetic kidney disease: A nested case-control study from the Diabetes Control and Complications Trial (DCCT), Am J Kidney Dis. 55 (2010) 824-34.

DOI: 10.1053/j.ajkd.2009.11.009

[38] V.C. Myers, M.S. Fine, Comparative distribution of urea, creatinine, uric acid and sugar in the blood and spinal fluid, Am J Med Sci, 76 (1918) 239–244.

[39] T. Yokozawa, T. Nakagawa, T. Oya, T. Okubo, L.R. Juneja, Green tea polyphenols and dietary fibre protect against kidney damage in rats with diabetic nephropathy, J Pharm Pharmacol. 57 (2005) 773-80.

DOI: 10.1211/0022357056154
Show More Hide