Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILNS > Volume 52 > Short Review on the Aggressive Behaviour:...
< Back to Volume

Short Review on the Aggressive Behaviour: Genetical, Biological Aspects and Oxytocin Relevance

Full Text PDF


In this mini-review we were interested in describing the main genetic, biological and mechanistic aspects of the aggressive behaviour in human patients and animal models. It seems that violent behaviour and impulsive traits present a multifactorial substrate, which is determined by genetic and non-genetic factors. Thus, aggressivity is regulated by brain regions such as the amygdala, which controls neural circuits for triggering defensive, aggressive or avoidant behaviour. Moreover, other brain structures such as the anterior cingulate cortex and prefrontal cortex regions could modulate circuits involved in aggression. Regarding the genetic aspects, we could mention the mutations in the monoamine oxidase or the polymorphisms of the genes involved in the metabolism of serotonin, such as tryptophan hydroxylase. Also, besides the low levels of serotonin metabolites, which seem to be associated with impulsive and aggressive traits, there are good evidences that deficiencies in glutamate transmission, as well as testosterone, vasopressin, hypochloesterolemia or oxytocin modifications could be related to the aggressive behaviour. Regarding oxytocin we present here in the last chapter the controversial results from the current literature regarding the various effects exhibited by oxytocin administration on the aggressive behavior, considering the increased interest in understanding the role of oxytocin on the main neuropsychiatric disorders.


International Letters of Natural Sciences (Volume 52)
M. Padurariu et al., "Short Review on the Aggressive Behaviour: Genetical, Biological Aspects and Oxytocin Relevance", International Letters of Natural Sciences, Vol. 52, pp. 43-53, 2016
Online since:
Mar 2016

[1] C. Anderson, B. Bushman, Human aggression, Annual Review of Psychology. 53 (2000) 27–51.

[2] J. Ramírez, J. Andreu, Aggression, and some related psychological constructs (anger, hostility, and impulsivity); some comments from a research project Neuroscience and Biobehavioural Reviews 30 (2006) 276–91.

DOI: 10.1016/j.neubiorev.2005.04.015

[3] N. Sillmay, Dicţionar de Psihologie Larousse. Ed. Univers Enciclopedic, Bucharest, 1995, 19.

[4] M. Briffa, Territoriality and Aggression, Nature Education Knowledge. 3 (2010) 81.

[5] M. Van Staaden, W. Earcy, R. Hanlon, Signaling Aggression in Aggression Academic Press, Stephen F. Goodwin, (2011).

[6] D. Maestripieri, D. Functional Aspects of Maternal Aggression in Mammals, Canadian Journal of Zoology. 70 (1992) 1069–1077.

[7] C. Tanner, Numerical assessment affects aggression and competitive ability: a team-fighting strategy for the ant Formica xerophila, Proceedings. Biological Sciences, 273 (2006) 2737–42.

DOI: 10.1098/rspb.2006.3626

[8] A. Rezanur Rahman, Cultural differences in aggression: a case study in Bangladesh, J. Life Earth Sci. 3-4 (2009) (2009).

DOI: 10.3329/jles.v3i0.7445

[9] M. Bond, Culture and aggression-from context to coercion, Pers Soc Psychol Rev. 8 (2004) 62-78.

[10] C. Cornaggia, M. Beghi, F. Pavone, F. Barale, Aggression in psychiatry wards: a systematic review. Psychiatry Res. 189 (2011) 10-20.

DOI: 10.1016/j.psychres.2010.12.024

[11] F. Poulin, M. Boivin, Reactive and Proactive Aggression : Evidence of a Two-Factor Model, Psychological Assessment. 12 (2000) 115-122.

DOI: 10.1037//1040-3590.12.2.115

[12] K. Barlow, B. Grenyer, O. Ilkiw-Lavalle, Prevalence and precipitants of aggression in psychiatric inpatient units, Aust N Z J Psychiatry. 34 (2000) 967-74.

DOI: 10.1080/000486700271

[13] P. Reebye, Aggression During Early Years — Infancy and Preschool, Child Adolesc Psychiatr Rev. 14 (2005) 16–20.

[14] H. Heyne, S. Lautenschläger, R. Nelson, F. Besnier, M. Rotival, A. Cagan, R. Kozhemyakina, I. Plyusnina, L. Trut, O. Carlborg, E. Petretto, L. Kruglyak, S. Pääbo, T. Schöneberg, F. Albert, Genetic influences on brain gene expression in rats selected for tameness and aggression, Genetics. 198 (2014).

DOI: 10.1534/genetics.114.168948

[15] M. Bortolato, K. Chen, S. Godar, G. Chen, W. Wu, I. Rebrin I, M. Farrell, A. Scott, C. Wellman, J. Shih, Social deficits and perseverative behaviours, but not overt aggression, in MAO-A hypomorphic mice, Neuropsychopharmacology. 36 (2011).

DOI: 10.1038/npp.2011.157

[16] A. Marusic, A. Farmer, Genetic risk factors as possible causes of the variation in European suicide rates, Br J Psychiatry. 179 (2001) 194-6.

DOI: 10.1192/bjp.179.3.194

[17] A. Takahashi, M. Isabel, R. Quadros, M. de Almeida, K. Miczek, Behavioural and Pharmacogenetics of Aggressive Behaviour, Curr Top Behav Neurosci. 12 (2012) 73–138.

[18] P. Trzepacz, P. Yu, P. Bhamidipati, B. Willis, T. Forrester, L. Tabas, A. Schwarz, Alzheimer's Disease Neuroimaging Initiative. Frontolimbic atrophy is associated with agitation and aggression in mild cognitive impairment and Alzheimer's disease, Alzheimers Dement. 9 (2013).

DOI: 10.1016/j.jalz.2012.10.005

[19] A. New, E. Hazlett, M. Buchsbaum, Blunted prefrontal cortical 18-fluorodeoxyglucose positron emission response to metachloro-phenylpiperazine in impulsive aggression, Arch Gen Psychiatry. 59 (2002) 621-629.

DOI: 10.1001/archpsyc.59.7.621

[20] A. Falkner, P. Dollar, P. Perona, D. Anderson, D. Lin, Decoding ventromedial hypothalamic neural activity during male mouse aggression, J Neurosci. 34 (2014) 5971-84.

DOI: 10.1523/jneurosci.5109-13.2014

[21] L. van Elst, F. Woermann, L. Lemieux, P. Thompson, M. Trimble, Affective aggression in patients with temporal lobe epilepsy: a quantitative MRI study of the amygdala, Brain. 123 (2000) 234-43.

DOI: 10.1093/brain/123.2.234

[22] D. Dougherty, F. Moeller, J. Bjork, D. Marsh, Plasma L-tryptophan depletion and aggression, Adv Exp Med Biol. 467 (1999) 57-65.

[23] G. Pandey, Biological basis of suicide and suicidal behaviour. Bipolar Disord. 15 (2013) 524-41.

[24] H. Soderstrom, K. Blennow, A. Sjodin, A. Forsman, New evidence for an association between the CSF HVA: 5-HIAA ratio and psychopathic traits, J Neurol Neurosurg Psychiatry. 74 (2003) 918–921.

DOI: 10.1136/jnnp.74.7.918

[25] E. Audero, B. Mlinar, G. Baccini, Z. Skachokova, R. Corradetti, C. Gross, Suppression of serotonin neuron firing increases aggression in mice, J Neurosci. 33 (2013) 8678-88.

DOI: 10.1523/jneurosci.2067-12.2013

[26] C. Widom, L. Brzustowicz, MAOA and the cycle of violence,: childhood abuse and neglect, MAOA genotype, and risk for violent and antisocial behaviour, Biol Psychiatry. 60 (2006) 684–910.

DOI: 10.1016/j.biopsych.2006.03.039

[27] O. Cases, I. Seif, J. Grimsby, P. Gaspar, K. Chen, S. Pournin, U. Müller, Aggressive behaviour and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA, Science. 268 (1995) 1763-6.

DOI: 10.1126/science.7792602

[28] A. Caspi, J. McClay, T. Moffitt, J. Mill, J. Martin, I. Craig, A. Taylor, Role of genotype in the cycle of violence in maltreated children, Science. 297 (2002) 851–854.

DOI: 10.1126/science.1072290

[29] J. Kim-Cohen, A. Caspi, A. Taylor, B. Williams, R. Newcombe, I. Craig, T. Moffitt, MAOA, maltreatment, and gene-environment interaction predicting children's mental health: new evidence and a meta-analysis, Mol Psychiatry. (2006).

[30] N. Alia-Klein, R. Goldstein, A. Kriplani, J. Logan, D. Tomasi, B. Williams, F. Telang, E. Shumay, A. Biegon, I. Craig, F. Henn, G. Wang, N. Volkow, J. Fowler, Brain monoamine oxidase A activity predicts trait aggression, J Neurosci. 28 (2008).

DOI: 10.1523/jneurosci.0925-08.2008

[31] M. Niciu, B. Kelmendi, G. Sanacora, Overview of glutamatergic neurotransmission in the nervous system, Pharmacology, Biochemistry, and Behaviour. 100 (2012) 656–64.

DOI: 10.1016/j.pbb.2011.08.008

[32] K. Schubert, M. Shaikh, A. Siegel, NMDA receptors in the midbrain periaqueductal gray mediate hypothalamically evoked hissing behaviour in the cat, Brain Research. 726 (1996) 80–90.

DOI: 10.1016/0006-8993(96)00261-2

[33] R. Bandler, Identification and midbrain periaqueductal grey neurones mediating aggressive and defensive behaviour by intracerebral microinjections of excitatory amino acids. New York: Alan R. Liss, Inc, (1984) 369–91.

[34] E. Coccaro, R. Lee, P. Vezina, Cerebrospinal fluid glutamate concentration correlates with impulsive aggression in human subjects, J Psychiatr Res. 47 (2013) 1247-53.

DOI: 10.1016/j.jpsychires.2013.05.001

[35] K. Chichinadze, T. Domianidze, T. Matitaishvili, N. Chichinadze, A. Lazarashvili, Possible relation of plasma testosterone level to aggressive behaviour of male prisoners, Bull Exp Biol Med. 149 (2010) 7–9.

DOI: 10.1007/s10517-010-0861-z

[36] M. Giammanco, G. Tabacchi, S. Giammanco, D. Di Majo, M. La Guardia, Testosterone and aggressiveness, Med Sci Monit. 11 (2005) 136–45.

[37] P. Negri-Cesi, A. Colciago, F. Celotti, M. Motta, Sexual differentiation of the brain: role of testosterone and its active metabolites, J Endocrinol Invest. 27 (2004) 120–7.

[38] Y. Kuepper, N. Alexander, R. Osinsky, E. Mueller, A. Schmitz, P. Netter, Aggression-interactions of serotonin and testosterone in healthy men and women, Behav Brain Res. 206 (2010) 93–100.

DOI: 10.1016/j.bbr.2009.09.006

[39] G. Van Wingen, L. Ossewaarde, T. Backstrom, E. Hermans, G. Fernandez, Gonadal hormone regulation of the emotion circuitry in humans, Neuroscience. 191 (2011) 38–45.

DOI: 10.1016/j.neuroscience.2011.04.042

[40] S. Caughey, S. Klampfl, V. Bishop, J. Pfoertsch, I. Neumann, O. Bosch, S. Meddle, Changes in the intensity of maternal aggression and central oxytocin and vasopressin V1a receptors across the peripartum period in the rat, J Neuroendocrinol. 23 (2011).

[41] B. Golomb, T. Kane, J. Dimsdale, Severe irritability associated with statin cholesterol-lowering drugs, QJM. 97(2004) 229-35.

DOI: 10.1093/qjmed/hch035

[42] C. Ferris, Vasopressin/oxytocin and aggression, Novartis Found Symp. 2005; 268: 190-8.

[43] C. Widom, L. Brzustowicz, MAOA and the cycle of violence,: childhood abuse and neglect, MAOA genotype, and risk for violent and antisocial behaviour, Biol Psychiatry. 60 (2006) 684–910.

DOI: 10.1016/j.biopsych.2006.03.039

[44] E. Coccaro, R. Kavoussi, R. Hauger, T. Cooper, C. Ferris, Cerebrospinal fluid vasopressin levels: correlates with aggression and serotonin function inpersonality-disordered subjects, Arch Gen Psychiatry. 55 (1998) 708-14.

DOI: 10.1001/archpsyc.55.8.708

[45] Yatawara CJ, Einfeld SL, Hickie IB, Davenport TA, Guastella AJ. The effect of oxytocin nasal spray on social interaction deficits observed in young children with autism: a randomized clinical crossover trial. Mol Psychiatry. 2015 Oct 27. doi: 10. 1038/mp. 2015. 162.

[46] Guastella AJ, Ward PB, Hickie IB, Shahrestani S, Hodge MA, Scott EM, Langdon R. A single dose of oxytocin nasal spray improves higher-order social cognition in schizophrenia. Schizophr Res. 2015; 168(3): 628-33.

[47] Alvares GA, Chen NT, Balleine BW, Hickie IB, Guastella AJ. Oxytocin selectively moderates negative cognitive appraisals in high trait anxious males. Psychoneuroendocrinology. 2012; 37(12): 2022-31.

DOI: 10.1016/j.psyneuen.2012.04.018

[48] Einfeld SL, Smith E, McGregor IS, Steinbeck K, Taffe J, Rice LJ, Horstead SK, Rogers N, Hodge MA, Guastella AJ. A double-blind randomized controlled trial of oxytocin nasal spray in Prader Willi syndrome. Am J Med Genet A. 2014; 164A(9): 2232-9.

DOI: 10.1002/ajmg.a.36653

[49] Dadds MR, Moul C, Cauchi A, Dobson-Stone C, Hawes DJ, Brennan J et al. Methylation of the oxytocin receptor gene and oxytocin blood levels in the development of psychopathy. Dev Psychopathol. 2014; 26(1): 33-40.

DOI: 10.1017/s0954579413000497

[50] Hernádi A, Kis A, Kanizsár O, Tóth K, Miklósi B, Topál J. Intranasally administered oxytocin affects how dogs (Canis familiaris) react to the threatening approach of their owner and an unfamiliar experimenter. Behav Processes. 2015; 119: 1-5.

[51] Rault JL, Carter CS, Garner JP, Marchant-Forde JN, Richert BT, Lay DC Jr. Repeated intranasal oxytocin administration in early life dysregulates the HPA axis and alters social behaviour. Physiol Behav. 2013; 112-113: 40-8.

[52] Hellmanna J, Reddonb A., Ligockia I., O'Connorb C, Kelly A., Susan E. et al. Group response to social perturbation: impacts of isotocin and the social landscape. Animal Behaviour. 2015; 105: 55–62.

[53] Bosch OJ, Meddle SL, Beiderbeck DI, Douglas AJ, Neumann ID. Brain oxytocin correlates with maternal aggression: link to anxiety. J Neurosci. 2005; 25(29): 6807-15.

DOI: 10.1523/jneurosci.1342-05.2005

[54] Bosch OJ. Maternal aggression in rodents: brain oxytocin and vasopressin mediate pup defence. Philos Trans R Soc Lond B Biol Sci. 2013; 368(1631): 20130085.

DOI: 10.1098/rstb.2013.0085

[55] DeWall C, Gillath O., Pressman D., Black L., Bartz A., Moskovitz J., Stetler A. When the Love Hormone Leads to Violence: Oxytocin Increases Intimate Partner Violence Inclinations Among High Trait Aggressive People Social Psychological and Personality Science. February 12, 2015: doi: 10. 1177/1948550613516876.

[56] Lind NM, Moustgaard A, Jelsing J, Vajta G, Cumming P, Hansen AK. The use of pigs in neuroscience: modeling brain disorders. Neurosci Biobehav Rev 2007; 31: 728–51.

[57] AlcornIII L., Rathnayaka N., Swann C., Gerard Moeller F., Lane D. Effects of Intranasal Oxytocin on Aggressive Responding in Antisocial Personality Disorder. The Psychological Record. 2015; 65(4): 691-703.

DOI: 10.1007/s40732-015-0139-y

[58] De Jong D, Beiderbeck D., Neumann I. Oxytocin reduces aggressive behaviour in virgin female rats. Neuroscience 2013 - Society for Neuroscience, Nov 9-13, San Diego, poster no. 754. 09.

[59] Lee H, Macbeth A, Pagani J, Young W. Oxytocin: the great facilitator of life. Prog. Neurobiol. 2009; 88: 127–151.

[60] Romero T, Nagasawa M, Mogi K, Hasegawa T, Kikusui T. Oxytocin promotes social bonding in dogs. Proc. Natl. Acad. Sci. 20104; 111: 9085–9090.

DOI: 10.1073/pnas.1322868111

[61] Alcorn J, Dias N, Moeller F, Lane S. A preliminary analysis of aggressive behaviour under oxytocin dose. Drug Alcohol Depend. 2014; 140: 4.

DOI: 10.1016/j.drugalcdep.2014.02.032

[62] De Dreu C. Oxytocin modulates cooperation within and competition between groups: an integrative review and research agenda. Horm. Behav. 2012; 61: 419–428.

[63] De Dreu CK, Greer LL, Handgraaf MJ, Shalvi S, Van Kleef GA, Baas M, Ten Velden FS, Van Dijk E, Feith SW. The neuropeptide oxytocin regulates parochial altruism in intergroup conflict among humans. Science. 2010; 328(5984): 1408-11.

DOI: 10.1126/science.1189047
Show More Hide