Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILNS > Volume 51 > Isolation and Computational Characterization of...
< Back to Volume

Isolation and Computational Characterization of Glutathione Peroxidase Gene from an Aquatic Fern - Salvinia molesta

Full Text PDF

Abstract:

Pteridophytes and more specifically ferns represent a large but threatened group of plants which often serve as important environmental markers for pollution. Reports regarding stress responses in ferns are rare, apart from a few studies involving the ecological distribution and molecular marker studies. This work isolates a glutathione peroxidase enzyme from an aquatic fern widely distributed in fresh and polluted water bodies adjacent to sources of environmental polluted sources. Further computational analyses were performed to study the structure of the protein encoded by the open reading frame. Results indicate the presence of a large number of binding pockets which serve as important binding sites in the interactions with the cognate ligands.

Info:

Periodical:
International Letters of Natural Sciences (Volume 51)
Pages:
58-62
Citation:
S. Rahaman et al., "Isolation and Computational Characterization of Glutathione Peroxidase Gene from an Aquatic Fern - Salvinia molesta ", International Letters of Natural Sciences, Vol. 51, pp. 58-62, 2016
Online since:
Feb 2016
Export:
Distribution:
References:

[1] D.S. Mitchell, Brit. Fern Gaz. (1972) 10(5): 251-252.

[2] S. Phetsombat,M. Kruatrachue, P. Pokethitiyook,S. Upatham , J Environ Biol. (2006)(4): 645-52.

[3] S. Ganguli,S. Gupta, A. Bhowmick, J. Ansari and M. Basu, Indian Science Cruiser (2008) page 38-45.

[4] S. Ganguli, A. Datta, International Letters of Natural Sciences, Vol. 7, (2013), pp.49-62.

[5] J.A. Bryant, DNA extraction, pp.1-12. In P.M. Dey and J.B. Harborne (Eds. ), Methods in Plant Biochemistry, (1997), Vol. 10b. Academic Press, San Diego.

[6] C.S. Kim C.H. Lee, J.S. Shin, Y.S. Chungand, N.I. Hyung, NucleicAcids Res. (1997) 25: 1085-1086.

[7] P. Technelysium, Chromas lite 2. 01. (2007), http: /www. technelysium. com. au/chromas_lite. html.

[8] M.D. Bethesda, National Center for Biotechnology Information (US); (2011)-. Available from: http: /www. ncbi. nlm. nih. gov/books/NBK51157.

[9] F. S. Altschul, , W. Gish,W. Miller W.E. Myers, and J.D. Lipman, (1990) J. Mol. Biol. 215: 403-410.

[10] N. Saitou , M. Nei , Molecular Biology and Evolution, 4(4), (1987) pp.406-425.

[11] ORF Finder, http: /www. ncbi. nlm. nih. gov/gorf/gorf. html.

[12] W.D. Cornell,P. Cieplak C.I. Bayly I.R. Gould K.M. Merz, D.M. Ferguson D.C. Spellmeyer, T Fox, J.W. Caldwell P.A. Kollman,J. Am. Chem. Soc. (1995)117: 5179–5197.

DOI: https://doi.org/10.1021/ja00124a002

[13] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus.

[14] J. Comp. Chem. 4, (1983), 187-217.

[15] R.A. Laskowski, M.W. MacArthur, D.S. Moss ,J.M. Thornton, J. App. Cryst., 26, (1993), 283-291.

[16] P. Benkert ,M. Künzli,T. Schwede , Nucleic Acids Res. 1; 37 (2009): W510-4.

[17] D. La, J. E. Rodriguez, V. Venkatraman, B. Li, L. Sael, S. Ueng, S. Ahrendt, and D. Kihara. Bioinformatics 25: (2009)2843-2844.

DOI: https://doi.org/10.1093/bioinformatics/btp542

[18] J. Dundas, Z. Ouyang, J. Tseng, A. Binkowski, Y. Turpaz, and J. Liang., Nucleic Acid Research, 34: ( 2006), W116-W118.

DOI: https://doi.org/10.1093/nar/gkl282

[19] G. M. Morris, R. Huey,W. Lindstrom, M. F. Sanner R.K. Belew D.S. Goodsell and A.J. Olson, J. Computational Chemistry (2009), 16: 2785-91.

[20] A.C. Wallace, R .A. Laskowski, J.M. Thornton, Protein Eng., 8, (1996). 127-134.

[21] S. Ganguli,A. Datta, American Journal of Bioinformatics Research (2015), 5(1): 9-15.

Show More Hide