This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] Ardelt, B.K.; Borowitz, J.L.; Isom, G.E.; (1989). Brain lipid peroxidation and antioxidant defence mechanisms following acute cyanide intoxication. Toxicol., 56, 147-54.
[2] Begum, G. (2011). Organ-specific ATPase and phosphorylase enzyme activities in a food fish exposed to a carbamate insecticide and recovery response. Fish Physiology and Biochemistry, 37 (1), 61-69.
[3] Cattell, R. B. (1996). The Screen Test for the number of Factors. Multivar. Behav. Res., 1, 245.
[4] Connell, D.; Lam, P.; Richardson, B.; Wu, R. (1999). Introduction to ecotoxicology. London press, p.170.
[5] Dreisenbach, R.H.; Robertson, W.O. (1987). Handbook of poisoning: prevention, diagnosis and treatment. 12th edition. Appleton and Lange, Norwalk, CT.
[6] Dube P.N.; Hosetti, B.B. (2010). Behaviour surveillance and oxygen consumption in the freshwater fish Labeo rohita (Hamilton) exposed to sodium cyanide. Biotechnology in Animal Husbandry, 26 (1-2), 91-103. http: /dx. doi. org/2298/BAH1002091D.
[7] Finney, D.T. (1971). Probit Analysis. 3rd Ed. Cambridge University Press. London.
[8] Greer, J.J.; Jo, E. (1995). Effects of cyanide on neural mechanisms controlling breathing in neonatal rat in vivo. Neurotoxicology, 16, 211– 215.
[9] Grinwis, G.C.M.; Boonstra, A.; Vandenbrandhof, E.J.; Dormans, J.A.M.A.; Engelsma, M.; Kuiper, V.; Vanloveren, H.; Wester, P.W.; Vaal, M.A.; Vethaak, A.D.; VOS J.G. (1998).
[10] Hartl, M.G.J.; Hutchinson, S.; Hawkins, L. (2001).
[11] Heskett, J.E.; Loudon, J.B.; Reading, W.H.; Glen, A.M. (1978). The effect of lithium treatment on erythrocyte membrane ATPase activities and erythrocyte ion content. Britain Journal of Clinical Pharmacy, 5, 323–329.
[12] Holland, D.J. (1983). Cyanide poisoning: an uncommon encounter. J Emerg. Nurs., 9(3), 138.
[13] Isom, G.E.; Borowitz, J.L. (1995). Modification of cyanide toxico-dynamics: Mechanistic based antidote development. Toxicol Lett., 82/83, 795-9.
[14] Isom, G.E.; Borowitz, J.L.; Mukhopadhyay, S. (2010). Sulfurtransferase enzymes involved in cyanide metabolism. In: Charlene A. M, editor. Comprehensive Toxicology. Oxford: Elsevier. p.485–500.
[15] Jones, M.G.; Bickar, D.; Wilson, M.T.; Brunori , M.; Colosimo, A.; Sarti, P. (1984). A re-exanimation of the reactions of cyanide with cytochrome oxidase. Biochem J., 220, 56–66.
[16] Kadiri. O. (2015).
[17] Moran, J.M.; Morgan, M.D.; Wiersma, D.; James, H. (1980). Introduction to environmental science, 2nd Edn. WH Freeman, New York, NY.
[18] OECD Guidelines for Testing of Chemicals (No. 203; Adopted: 17th July, 1992).
[19] Okolie, N. P.; Audu, K. (2004). Correlation between cyanide- induced decreases in ocular Ca2+-ATPase and lenticular opacification. Journal of Biomedical Sciences, 3 (1), 37-41.
[20] Prashanth, M.S., H.A. Sayeswaraand and A.G. Mahesh 2011. Effect of Sodium Cyanide on Behaviour and Respiratory Surveillance in Freshwater Fish, Labeo Rohita (Hamilton). Recent Research in Science and Technology, 3(2), 24-30.
[21] Radhaiah, V.; Jayantha, R.K. (1988). Behavioural response of fish, Tilapia mossambica exposed to fenvalerate - Environmental Ecology, 6(2), 2-23.
[22] Ramzy, M.E. (2014). Toxicity and stability of sodium cyanide in fresh water fish Nile tilapia-Water Science 28, 42–50. http: /dx. doi. org/10. 1016/j. wsj. 2014. 09. 002.
[23] Shwetha, A.; Praveen, N.B.; Hosetti, B.B. (2012). Effect of Exposure to Sublethal Concentrations of Zinc Cyanide on Tissue ATPase Activity in the Fresh Water Fish, Cirrhinus mrigala (Ham). Acta Zoologica Bulgarica, 64 (2), 185-190.
[24] Shwetha, A.; Hosetti, B.B. (2009). Acute effects of zinc cyanide on the behaviour and oxygen consumption of the Indian major carp, Cirrhinus mrigala-World Journal of Zoology 4(3), 238-246.
[25] Solomonson, L.P. (1981). Cyanide as a metabolic inhibitor. In Cyanide in biology edited by B. Vennesland, E.E. Conn, C.J. Knowles, J. Westley and F. Wissing, San Diego, Academic Press, pp: 11-28.
[26] Tiwari, B.S.; Belenghi, B.; Levine, A. (2002).
[27] Unnisa, Z.A.; Devaraj, N.S. (2007). Effect of methacrylo-nitrile on membrane bound enzymes of rat brain. Ind. J. Physiol. Pharmacol., 51(4), 405–409.