Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILNS > Volume 43 > Role of Nanoplanktons in Marine Food-Webs
< Back to Volume

Role of Nanoplanktons in Marine Food-Webs

Full Text PDF

Abstract:

Nanoplanktons are ubiquitous protozoan zooplankton in a size range of 2 to 20 μm, play key ecological roles in aquatic ecosystems. Heterotrophic nanoflagellates are distributed through the continental shelf and margin area of the oceans as well as deep-sea. These organisms contribute significantly to the total living biomass within these systems, serve as the major top–down control on bacterial assemblages, and are an important source of mortality for microalgae and other heterotrophic nanoflagellates. From many recent studies, it is generally accepted that HNF is one of the most important bacterial consumers. They also function as important remineralizers of organic matter and nutrients in aquatic systems. In accordance with these important ecological roles, heterotrophic nanoflagellates have been the subject of considerable study both in the field and laboratory.

Info:

Periodical:
International Letters of Natural Sciences (Volume 43)
Pages:
38-47
Citation:
N. Das and A. Pandey, "Role of Nanoplanktons in Marine Food-Webs", International Letters of Natural Sciences, Vol. 43, pp. 38-47, 2015
Online since:
Jul 2015
Export:
Distribution:
References:

[1] Adrian, R. 1991. Filtering and feeding rates of cyclopoid copepods feeding on phytoplankton. Hydrobiologia 210: 217-223.

DOI: https://doi.org/10.1007/bf00034680

[2] Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA & Thingstad F (1983) The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10: 257–263.

DOI: https://doi.org/10.3354/meps010257

[3] Ballintine, J. 1953. Comparison of the different methods of estimating nanoplankton. J. Mar. Biol. Assoc. U. K. 32: 129-147.

[4] Barsdate, R. J., T. Fenchel and R. T. Prentki. 1974. Ph~sphorous cycle of a model ecosystem: significance for decomposer food chains and effect of bacterial grazers. Oikos. 25: 239-251.

DOI: https://doi.org/10.2307/3543942

[5] Beaver, J.R. and T.L. Crisman. 1989. The role of ciliated protozoa in pelagic freshwater ecosystems. Microbial Ecology 17: 111-136.

DOI: https://doi.org/10.1007/bf02011847

[6] Christoffersen K, B. Riemann, A. Klysner, and M. Sondergaard. 1993. Potential role of fish predation and natural populations of zooplankton in structuring a plankton community in eutrophic lake water. Limnology and Oceanography 38: 561-573.

DOI: https://doi.org/10.4319/lo.1993.38.3.0561

[7] Christoffersen, K., B. Riemann, L.R. Hansen, A. Klysner, and H.B. Sorensen 1990. Qualitative importance of the microbial loop and plankton community structure in a eutrophic lake during a bloom of cyanobacteria. Microbial Ecology 20: 253-272.

DOI: https://doi.org/10.1007/bf02543881

[8] Cole JJ, Findlay S & Pace MJ (1988) Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Marine Ecology Progress Series 43: 1–10.

DOI: https://doi.org/10.3354/meps043001

[9] Cole, J.J. and N.F. Caraco. 1993. The pelagic microbial food web of oligotrophic lakes., pp.101-111. In T.E. Ford [ed. ], Aquatic microbiology. An ecological approach. Blackwell Scientific Publications.

[10] Daggett, P., and T. A. Nerad. 1982. Axenic cultivation of Bodo edax and Bodo ancinatus and observations on feeding rate in monoaxenic culture. Abst. 30. J. Protozool. 29: 290-291.

[11] Davis, P. G. and J. McN. Sieburth. 1982. Differentiation of phototrophic and heterotrophic nanoplankton populations in marine waters by epifluorescent microscopy. Annls. Inst. Oceanogr., Paris 58(S): 249-260.

[12] Dussart, G. 1965. Les differentes categories de planction. Hydrobiologia 26: 72- 74. Estep, K., P. G. Davis, M. D. Keller and J. McN Sieburth. 1986. How important are algal nanoflagellates in bactivory. Limnol. Oceanogr. 31: 646-650.

DOI: https://doi.org/10.4319/lo.1986.31.3.0646

[13] Fenchel, T. 1982a. Ecology of heterotrophic microflagellates I. Some important forms. Mar. Ecol. Prog. Ser. 8: 211-233.

DOI: https://doi.org/10.3354/meps008211

[14] Fenchel, T. 1982b. Ecology of heterotrophic microflagellates II. Bioenergetics and growth. Mar. Ecol. Prog. Ser. 8: 225-231.

DOI: https://doi.org/10.3354/meps008225

[15] Fenchel, T. 1982c. Ecology of heterotrophic microflagellates II. Adaptations to heterogeneous environment. Mar. Ecol. Prog. Ser. 9: 25-33.

DOI: https://doi.org/10.3354/meps009025

[16] Fenchel, T. 1982d. Ecology of heterotrophic microflagellates IV. Quantitative, importance and occurrence as bacterial consumers. Mar. Ecol. Prog. Ser. 9: 35-42.

DOI: https://doi.org/10.3354/meps009035

[17] Finlay K, Roff JC (2004) Radiotracer determination of the diet of calanoid copepod nauplii and copepodites in a temperate estuary. Ices Journal of Marine Science 61: 552-562.

DOI: https://doi.org/10.1016/j.icesjms.2004.03.010

[19] Gasol JM (1994) A framework for the assessment of top-down vs bottom-up control of heterotrophic nanoflagellate abundance. Mar Ecol Prog Ser 113: 291- 300.

DOI: https://doi.org/10.3354/meps113291

[20] Gasol JM, Simons AM, Kalff J (1995) Patterns in the top-down versus bottom- up regulation of heterotrophic nanoflagellates in temperate lakes. J Plankton Res 17: 1879-(1903).

DOI: https://doi.org/10.1093/plankt/17.10.1879

[21] Goldman, J. C. and D. A. Caron. 1985. Experimental studies on an omnivorous microflagellate: implications for grazing and nutrient regeneration in the marine microbial food chain. Deep Sea Res. 32: 899-915.

DOI: https://doi.org/10.1016/0198-0149(85)90035-4

[22] Goldman, J. C., D. A. Caron, 0. Ketil Andersen and M. R. Dennett. 1985. Nutrient cycling in a microflagellate food chain I. Nitrogen dynamics. Mar. Ecol. Prog. Ser. 24: 231-242.

DOI: https://doi.org/10.3354/meps024231

[23] Gude H. 1979. Grazing by protozoa as a selection factor for activated sludge. Microb. Ecol. 5: 225-237.

DOI: https://doi.org/10.1007/bf02013529

[24] Haas L. W. and K. L. Webb. 1979. Nutritional mode of several non-pigmented microflagellates from the York river estuary, Virginnia. J. Exp. Mar. Biol. Ecol. 39: 125-134.

DOI: https://doi.org/10.1016/0022-0981(79)90009-1

[25] Hilliard, D. K. 1971. Notes on the occurrence and taxonomy of some planktonic Chrysophytes in an Alaskan lake, with comments on the genus Bicoeca. Arch. Protistenk. D. 113: 98-122.

[26] Hobbie, J. E., R. J. Daley and S. Jasper. 1977. Use of Nuclepore filters for counting bacteria by fluorescent microscopy. Appl. Environ. Microbiol. 33: 1225- 1228.

[27] Jansson M, Bergström A-K, Blomqvist P, Isaksson A & Jonsson A (1999) Impact of allochthonous organic carbon on microbial food web carbon dynamics and structure in Lake Örträsket. Archiv für Hydrobiologie 144: 409–428.

DOI: https://doi.org/10.1127/archiv-hydrobiol/144/1999/409

[28] Jurgens, K., S.A. Wickham, K.O. Rothhaupt, and B. Santer. 1996. Feeding rates of macro- and microzooplankton on heterotrophic nanoflagellates. Limnology and Oceanography 41: 1833-1839.

DOI: https://doi.org/10.4319/lo.1996.41.8.1833

[29] Kopylov, A. I. and E. F. Moiseev. 1980. Effect of colourless flagellates on the determination of bacterial production in seawater. Hydrobiology 252: 503-505.

[30] Kopylov, A. I., A. F. Pasternak and Y. V. Moiseev. 1981. Consumption of flagellates by planktonic organisms. Oceanology 2 1: 269-271.

[32] Landry M. R. and R. P. Hassett. 1982. Estimating the grazing impact of marine microzooplankton. Mar. Biol. 67: 283-288.

[33] Leadbeater, B. S. C. and C. Morton. 1974. A microscopical study of a marine species of Codnosiqa James -Clark (Choanoflagellate) with special reference to the ingestion of bacteria. Bot. J. Linn. Soc. 6: 337-347.

DOI: https://doi.org/10.1111/j.1095-8312.1974.tb00728.x

[34] Levine, N. D et al. 1980. A Newly Revised Classification of Protozoa. J. Protozool. 27: 37-58.

[35] Lighthart, B. 1969. Planktonic and benthic bacterivorous protozoa at 11 stations in the Puget Sound and adjacent Pacific Ocean. J. Fish. Res. Bd. Can. 26: 299-306.

DOI: https://doi.org/10.1139/f69-030

[36] Perry, J.J., J.T. Staley, and S. Lory. 2002. Microbial life. Sinauer Associates, Inc. Reuman DC, Cohen JE (2004) Trophic links' length and slope in the Tuesday Lake food web with species' body mass and numerical abundance J Anim Ecol 73: 852-866.

DOI: https://doi.org/10.1111/j.0021-8790.2004.00856.x

[37] Rassoulzadegan F, Lavalpeuto M, Sheldon RW (1988) Partitioning of the food ration of marine ciliates between picoplankton and nanoplankton. Hydrobiologia 159: 75-88.

DOI: https://doi.org/10.1007/bf00007369

[38] Rassoulzadegan F, Sheldon RW (1986) Predator-prey interactions of nanozooplankton and bacteria in an oligotrophic marine-environment Limnol Oceanogr 31: 1010-1021.

DOI: https://doi.org/10.4319/lo.1986.31.5.1010

[39] Sherr EB, Sherr BF (2002) Significance of predation by protists in aquatic microbial food webs. Antonie Van Leeuwenhoek 81: 293-308.

DOI: https://doi.org/10.1023/a:1020591307260

[40] Sieburth J McN, Davis PG (1982) The role of heterotrophic nanoplankton in the grazing and nurturing of planktonic bacteria in the Sargasso and Caribbean seas. Ann Inst Oceanogr Paris 58: 285-296.

[41] Sieburth, J. McN. and P. G. Davis. 1982. The role . of heterotrophic nanoplankton in the grazing and nurturing of planktonic bacteria in the Sargasso and Caribbean Seas.

[42] Annls. Inst. Oceanogr. Paris. 58(S): 285-296.

[43] Stockner JG & Porter KG (1988) Microbial food webs in freshwater planktonic ecosystems. In Complex Interactions in Lake Communities (Ed Carpenter SR), Springer Verlag, New York, p.69–84.

DOI: https://doi.org/10.1007/978-1-4612-3838-6_5
Show More Hide