Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILNS > Volume 42 > Toxic Effect of Single Walled Carbon Nanotubes...
< Back to Volume

Toxic Effect of Single Walled Carbon Nanotubes Combined with Cadmium to the Crustacean Daphnia magna

Full Text PDF

Abstract:

The aim of this study was to assess the impact of single-walled carbon nanotubes (SWCNT) on the toxicity of cadmium (Cd) using the crustacean Daphnia magna. LC50 of Cd and SWCNT alone and combined were calculated and compared. Sorption of Cd on SWCNT was also quantified in separate batch experiments. Results showed that the maximum adsorption of Cd onto SWCNT calculated by the Langmuir equation was 24.4 mg kg-1. LC50s for Cd and SWCNT alone were 252.3 µg L-1 and 1400 µg L-1, respectively. In the presence of 500 and 1000 µg L-1 of SWCNT, Cd LC50s were 127.2 and 120.1 µg L-1 respectively. Therefore, Cd toxicity increased when organisms were exposed to both contaminants which indicated that SWCNT induces a synergistic toxic effect on the survival of D. magna. It appears that even if SWCNT had a low adsorption capacity for Cd, toxicity of the metal can be increased. Our study shows the complexity of SWCNT toxicity and how the understanding of their interactions with other contaminants is crucial to determine the consequences of their release into the environment.

Info:

Periodical:
International Letters of Natural Sciences (Volume 42)
Pages:
50-61
Citation:
M. Revel et al., "Toxic Effect of Single Walled Carbon Nanotubes Combined with Cadmium to the Crustacean Daphnia magna", International Letters of Natural Sciences, Vol. 42, pp. 50-61, 2015
Online since:
July 2015
Export:
Distribution:
References:

[1] Al-Shaeri, M., D. Ahmed, F. McCluskey, G. Turner, L. Paterson, E. A. Dyrynda and M. G. J. Hartl (2013). Potentiating toxicological interaction of single-walled carbon nanotubes with dissolved metals. Environ Toxicol Chem 32(12): 2701-2710.

DOI: https://doi.org/10.1002/etc.2365

[2] Alloy, M. M. and A. P. Roberts (2011). Effects of suspended multi-walled carbon nanotubes on daphnid growth and reproduction. Ecotoxicol Environ Saf 74(7): 1839-1843.

DOI: https://doi.org/10.1016/j.ecoenv.2011.06.020

[3] ASTM (2014). E729-96. Standard Guide for Conducting Acute Toxicity Tests on Test materials with fishes, macroinvertebrates, and amphibians, ASTM International, West Conshohocken, PA, (2014).

DOI: https://doi.org/10.1520/e0729

[4] Attar, E. N. and E. J. Maly (1982). Acute toxicity of cadmium, zinc, and cadmium-zinc mixtures to Daphnia magna. Arch Environ Contam Toxicol 11(3): 291-296.

[5] Baun, A., S. N. Sørensen, R. F. Rasmussen, N. B. Hartmann and C. B. Koch (2008). Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60. Aquat Toxicol 86(3): 379-387.

DOI: https://doi.org/10.1016/j.aquatox.2007.11.019

[6] Bhatt, I. and B. N. Tripathi (2011). Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 82(3): 308-317.

DOI: https://doi.org/10.1016/j.chemosphere.2010.10.011

[7] Biesinger, K., L. Williams and W. Schalie. (2002). Procedures for conducting Daphnia magna' toxicity bioassays. . USER, S GUIDE. U.S. Environmental Protection Agency, Washington, D.C., EPA/600/8-87/011 (NTIS PB88124722).

[8] Bodar, C. W. M., C. J. Van Leeuwen, P. A. Voogt and D. I. Zandee (1988). Effect of cadmium on the reproduction strategy of Daphnia magna. Aquat Toxicol 12(4): 301-309.

DOI: https://doi.org/10.1016/0166-445x(88)90058-6

[9] Cheng, J., E. Flahaut and S. H. Cheng (2007). Effect of carbon nanotubes on developing zebrafish (Danio Rerio) embryos. Environ Toxicol Chem 26(4): 708-716.

DOI: https://doi.org/10.1897/06-272r.1

[10] Dillon, A. C., P. A. Parilla, J. L. Alleman, T. Gennett, K. M. Jones and M. J. Heben (2005). Systematic inclusion of defects in pure carbon single-wall nanotubes and their effect on the Raman D-band. Chem. Phys. Lett. 401(4-6): 522-528.

DOI: https://doi.org/10.1016/j.cplett.2004.11.104

[11] Dresselhaus, M. S., G. Dresselhaus and A. Jorio (2004). Unusual properties and structure of carbon nanotubes. Annu Rev Mater Res 34: 247-278.

DOI: https://doi.org/10.1146/annurev.matsci.34.040203.114607

[12] Environment-Canada (1990). Biological Test Method: Acute Lethality Test Using Daphnia spp. Report EPS 1/RM/11. Environment Canada, Ottawa, Ontario, Canada: 55.

[13] Ferguson, P. L., G. T. Chandler, R. C. Templeton, A. Demarco, W. A. Scrivens and B. A. Englehart (2008).

[14] Ferreira, A. L. G., S. Loureiro and A. M. V. M. Soares (2008). Toxicity prediction of binary combinations of cadmium, carbendazim and low dissolved oxygen on Daphnia magna. Aquat Toxicol 89(1): 28-39.

DOI: https://doi.org/10.1016/j.aquatox.2008.05.012

[15] Geller, W. and H. Müller (1981). The filtration apparatus of Cladocera: Filter mesh-sizes and their implications on food selectivity. Oecologia 49(3): 316-321.

DOI: https://doi.org/10.1007/bf00347591

[16] Giusto, A., L. A. Somma and L. Ferrari (2012). Cadmium toxicity assessment in juveniles of the Austral South America amphipod Hyalella curvispina. Ecotoxicol Environ Safety 79(0): 163-169.

DOI: https://doi.org/10.1016/j.ecoenv.2011.12.020

[17] Hare, L. (1992). Aquatic Insects and Trace Metals: Bioavailability, Bioaccumulation, and Toxicity. Crit Rev Toxicol 22(5-6): 327-369.

[18] Hasler, A. D. (1935). The physiology of digestion of plankton crustacea: I. Some digestive enzymes of daphnia. Biol Bull 68(2): 207-214.

DOI: https://doi.org/10.2307/1537264

[19] Jaroniec, M. (1983). Physical adsorption on heterogeneous solids. Adv. Colloid Interface Sci. 18(3–4): 149-225.

[20] Kennedy, A. J., M. S. Hull, J. A. Steevens, K. M. Dontsova, M. A. Chappell, J. C. Gunter and C. A. Weiss Jr (2008).

[21] Kim, K. S., G. Cota-Sanchez, C. T. Kingston, M. Imris, B. Simard and G. Soucy (2007). Large-scale production of single-walled carbon nanotubes by induction thermal plasma. J. Phys. D: Appl. Phys 40(8): 2375-2387.

DOI: https://doi.org/10.1088/0022-3727/40/8/s17

[22] Kim, K. S., G. Cota-Sanchez, C. T. Kingston, M. Imris, B. Simard and G. Soucy (2007). Large-scale production of single-walled carbon nanotubes by induction thermal plasma. J. Phys. D: Appl. Phys. 40(8): 2375-2387.

DOI: https://doi.org/10.1088/0022-3727/40/8/s17

[23] Lampert, W. (1987). Feeding and nutrition in Daphnia. Mem. Ist. Ital. Idrobiol 45: 143–192.

[24] Lazorchak, J. M., M. E. Smith and H. J. Haring (2009). Development and validation of a Daphnia magna four-day survival and growth test method. Environ Toxicol Chem 28(5): 1028-1034.

DOI: https://doi.org/10.1897/08-296.1

[25] Li, M. and C. P. Huang (2011). The responses of Ceriodaphnia dubia toward multi-walled carbon nanotubes: Effect of physical-chemical treatment. Carbon 49(5): 1672-1679.

DOI: https://doi.org/10.1016/j.carbon.2010.12.052

[26] Li, Y. -h., Z. -c. Di, Z. -k. Luan, J. Ding, H. Zuo, X. -q. Wu, C. -L. Xu and D. -h. Wu (2004). Removal of heavy metals from aqueous solution by carbon nanotubes: adsorption equilibrium and kinetics. J. Environ. Sci 16(2): 208-211.

[27] Li, Y. -H., Z. Di, J. Ding, D. Wu, Z. Luan and Y. Zhu (2005). Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res 39(4): 605-609.

DOI: https://doi.org/10.1016/j.watres.2004.11.004

[28] Lu, C., H. Chiu and C. Liu (2006). Removal of Zinc(Iijima) from Aqueous Solution by Purified Carbon Nanotubes:  Kinetics and Equilibrium Studies. Ind Eng Chem Res 45(8): 2850-2855.

DOI: https://doi.org/10.1021/ie051206h

[29] Martinez, D. S. T., O. L. Alves and E. Barbieri (2013). Carbon nanotubes enhanced the lead toxicity on the freshwater fish. J. Phys Conference Series 429(1).

DOI: https://doi.org/10.1088/1742-6596/429/1/012043

[30] Moore, M. N. (2006). Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32(8): 967-976.

DOI: https://doi.org/10.1016/j.envint.2006.06.014

[31] Moradi, O., K. Zare and M. Yari (2011). Interaction of some heavy metal ions with single walled carbon nanotube. Int J Nano Dimens 1(3): 203-220.

[32] Mwangi, J. N., N. Wang, C. G. Ingersoll, D. K. Hardesty, E. L. Brunson, H. Li and B. Deng (2012). Toxicity of carbon nanotubes to freshwater aquatic invertebrates. Environ Toxicol Chem 31(8): 1823-1830.

DOI: https://doi.org/10.1002/etc.1888

[33] OECD Test No. 211: Daphnia magna Reproduction Test, OECD Publishing.

[34] Pennak (1978). Cladocera (water fleas). In Freshwater invertebrates of the United States. John Wiley & Sons, New York.

[35] Petersen, E. J., J. Akkanen, J. V. K. Kukkonen and W. J. Weber (2009). Biological Uptake and Depuration of Carbon Nanotubes by Daphnia magna. Environ Sci Technol 43(8): 2969-2975.

DOI: https://doi.org/10.1021/es8029363

[36] Petersen, E. J., J. Akkanen, J. V. K. Kukkonen and W. J. Weber (2009). Biological Uptake and Depuration of Carbon Nanotubes by Daphnia magna. Environmental Science & Technology 43(8): 2969-2975.

DOI: https://doi.org/10.1021/es8029363

[37] Petersen, E. J., R. A. Pinto, D. J. Mai, P. F. Landrum and W. J. Weber Jr (2011).

[38] Qu, R., X. Wang, Z. Wang, Z. Wei and L. Wang (2014).

[39] Qu, R. J., X. H. Wang, M. B. Feng, Y. Li, H. X. Liu, L. S. Wang and Z. Y. Wang (2013).

[40] Souid, G., N. Souayed, F. Yaktiti and K. Maaroufi (2013). Effect of acute cadmium exposure on metal accumulation and oxidative stress biomarkers of Sparus aurata. Ecotoxicol Environ Safety 89(0): 1-7.

DOI: https://doi.org/10.1016/j.ecoenv.2012.12.015

[41] Tan, C., K. Tan, Y. Ong, A. Mohamed, S. Zein and S. Tan (2012). Energy and environmental applications of carbon nanotubes. Environ Chem Lett 10(3): 265-273.

DOI: https://doi.org/10.1007/s10311-012-0356-4

[42] Templeton, R. C., P. L. Ferguson, K. M. Washburn, W. A. Scrivens and G. T. Chandler (2006). Life-cycle effects of single-walled carbon nanotubes (SWNTs) on an estuarine meiobenthic copepod. Environ Sci Technol 40(23): 7387-7393.

DOI: https://doi.org/10.1021/es060407p

[43] Toh, R. J., A. Ambrosi and M. Pumera (2012). Bioavailability of metallic impurities in carbon nanotubes is greatly enhanced by ultrasonication. Chem Eur J 18(37): 11593-11596.

DOI: https://doi.org/10.1002/chem.201201955

[44] USGS. Mineral Commodity Summaries. U.S. Geological Survey: 36-37. (2013).

[45] Vellinger, C., M. Parant, P. Rousselle, F. Immel, P. Wagner and P. Usseglio-Polatera (2012). Comparison of arsenate and cadmium toxicity in a freshwater amphipod (Gammarus pulex). Environ Poll 160(0): 66-73.

DOI: https://doi.org/10.1016/j.envpol.2011.09.002

[46] Wang, W. X. and P. S. Rainbow (2006). Subcellular partitioning and the prediction of cadmium toxicity to aquatic organisms. Environ Chem 3(6): 395-399.

[47] Weltens, R., R. Goossens and S. Van Puymbroeck (2000). Ecotoxicity of Contaminated Suspended Solids for Filter Feeders (Daphnia magna). Arch Environ Contam Toxicol 39(3): 315-323.

DOI: https://doi.org/10.1007/s002440010110

[48] Weltens, R., R. Goossens and S. Van Puymbroeck (2000). Ecotoxicity of Contaminated Suspended Solids for Filter Feeders (Daphnia magna). Arch Environ Contam Toxicol 39(3): 315-323.

DOI: https://doi.org/10.1007/s002440010110

[49] Wen-Hong, F., G. Tang, C. M. Zhao, Y. Duan and R. Zhang (2009). Metal accumulation and biomarker responses in Daphnia magna following cadmium and zinc exposure. Environ Toxicol Chem 28(2): 305-310.

DOI: https://doi.org/10.1897/07-639.1

[50] Wijnhoven, S., Ir. A.G. Oomen, A.J.A.M. Sips, F.C. Bourgeois, G.J.P.M. te Dorsthorst, M.W. Kooi and M. I. Bakker (2011).

[51] Youn, S., R. Wang, J. Gao, A. Hovespyan, K. J. Ziegler, J. C. J. Bonzongo and G. Bitton (2012). Mitigation of the impact of single-walled carbon nanotubes on a freshwater green algae: Pseudokirchneriella subcapitata. Nanotoxicology 6(2): 161-172.

DOI: https://doi.org/10.3109/17435390.2011.562329
Show More Hide