Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILNS > ILNS Volume 38 > Influence on Different Types of Mycorrhizal Fungi...
< Back to Volume

Influence on Different Types of Mycorrhizal Fungi on Crop Productivity in Ecosystem

Full Text PDF


Mycorrhizal fungi greatly enhanced the ability of plants to take up phosphorus and other nutrients those are relatively immobile and exist in low concentration in the soil solution. Fungi can be important in the uptake of other nutrients by the host plant. Mycorrhizae establish symbiotic relationships with plants and play an essential role in plant growth, disease protection, and overall soil quality. Of the seven types of mycorrhizae described in current scientific literature (arbuscular, ecto, ectendo, arbutoid, monotropoid, ericoid and orchidaceous mycorrhizae), the arbuscular and ectomycorrhizae are the most abundant and widespread. This chapter presents an overview of current knowledge of mycorrhizal interactions, processes, and potential benefits to society. The molecular basis of nutrient exchange between arbuscular mycorrhizal (AM) fungi and host plants is presented; the role of AM fungi in disease protection, alleviation of heavy metal stress and increasing grain production. Most land plants form associations with mycorrhizal fungi. Mycorrhizas are mutualistic associations between fungi and plant roots. They are described as symbiotic because the fungus receives photo synthetically derived carbon compounds and the plant has increased access to mineral nutrients and sometimes water.


International Letters of Natural Sciences (Volume 38)
K. Ramakrishnan and G. Bhuvaneswari, "Influence on Different Types of Mycorrhizal Fungi on Crop Productivity in Ecosystem", International Letters of Natural Sciences, Vol. 38, pp. 9-15, 2015
Online since:
May 2015

Al-Karaki, McMichael G, Zak B. Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14: 263-269 (2004).

Antunes, P.M., de Varennes, A., Zhang, T., and Goss, M.J., 2006, the tripartite symbiosis formed by indigenous arbuscular mycorrhizal fungi, Bradyrhizobium japonicum and soya bean under field conditions. J. Agr. Crop Sci. 192: 373-378.

Bago, B. 2000. Putative sites for nutrient uptake in arbuscular mycorrhizal fungi. Plant and Soil 226: 263-274.

Barea, J.M., Azcón, R., and Azcón-Aguilar, C., 2002, Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie van Leeuwenhoek 81: 343-351.

Blaha G, Stelzl U, Spahn CMT, Agrawal RK, Frank J, Nierhaus KH (2000) Preparation of functional ribosomal complexes and effect of buffer conditions on tRNA positions observed by cryoelectron microscopy. Meth Enzymol 317: 292-309.

Bucher, M., 2007, Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol. 173: 11-26.

Budi, S.W., van Tuinen, D., Martinotti, G., and Gianinazzi, S., 1999, Isolation from the Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soilborne fungal pathogens. Appl. Environ. Microbiol. 65: 5148-5150.

Burke, S.C., Angle, J.S., Chaney, R.L., and Cunningham, S.D., 2000, Arbuscular mycorrhizae effects on heavy metal uptake by corn. Intern. J. Phytorem. 2: 23-29.

Calvet, C., Barea, J.M., and Pera, J., 1992, In vitro interactions between the vesiculararbuscular mycorrhizal fungus Glomus mosseae and some saprophytic fungi isolated from organic substrates. Soil Biol. Biochem. 24: 775-780.

Chalot, M., and A. Brun. 1998. Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiology Reviews 22: 21-44.

Clark, R.B., and S.K. Zeto. 2000. Mineral acquisition by arbuscular mycorrhizal plants. Journal of Plant Nutrition 23: 867-902.

Daeia G, Ardekania M R,. Rejalic F, Teimurib S, Miransarid M. Alleviation of salinity stress on wheat yield, yield components and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physio 166 : 617-625 (2009).

de Varennes, A., and Goss, M.J., 2007, The tripartite symbiosis between legumes, rhizobia and indigenous mycorrhizal fungi is more efficient in undisturbed soil. Soil Biol. Biochem. 39: 2603-2607.

Dell, B., N. Malajczuk, W. Dunstan, M.Q. Gong, Y.L. Chen, S. Lumyong, P. Lumyong, Supriyanto, and L. Ekwey. 2000. Edible forest fungi in SE Asia - Current practices and future management. Proceedings of International Workshop BIOREFOR, Nepal, 1999. pp.123-130.

Elsen, A., Declerck, S., and De Waele, D., 2001, Effects of Glomus intraradices on the reproduction of the burrowing nematode (Radopholus similis) in dixenic culture. Mycorrhiza 11: 49-51.

Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigat ion of ionic imbalance in NaCl-stressed Trigonellafoenum-graecum. Mycorrhiza 22: 203-217.

Filion, M., St-Arnaud, M., and Fortin, J.A., 1999, Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol. 141: 525-533.

Gadd, G.M., 2005, Microorganisms in toxic metal-polluted soils, pp.325-356.

Galvez L, Douds D D, Drinkwater Le and Wagoner P. Effect of tillage and farming system upon VAM fungus populations and mycorrhizas and nutrient uptake of maize Plant and Soil 228: 299-308 (2001).

Göhre, V., and Paszkowski, U., 2006, Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223: 1115-1122.

Goss, M.J., and de Varennes, A., 2002, Soil disturbance reduces the efficacy of mycorrhizal associations for early soybean growth and N2 fixation. Soil Biol. Biochem. 34: 1167-1173.

Gryndler, M., Vosatka, M., Hrselova, H., Catska, V., Chvatalova, I., and Jansa, J., 2002, Effect of dual inoculation with arbuscular mycorrhizal fungi and bacteria on growth and mineral nutrition of strawberry. J. Plant Nutr. 25: 1341-1358.

Hawkins, H.J., Johansen, A., and George, E., 2000, Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226: 275-285.

Joner, E.J., Briones, R., and Leyval, C., 2000, Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226: 227-234.

Koide, R.T., and Kabir, Z., 2000, extra radical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytol. 148: 511-517.

Leyval, C., and Joner, E.J., 2001, Bioavailability of heavy metals in the mycorrhizosphere, pp.165-185. In G.R. Gobran, W.W. Wenzel, and E. Lombi (Eds. ), Trace elements in the rhizosphere. CRC, Boca Raton, FL.

Maathuis FJM (2009) Physiological functions of mineral macro nutrients. Curr Opin Plant Biol 12: 250-258.

Marschner, P., Jentschke, G., and Godbold, D.L., 1998, Cation exchange capacity and lead sorption in ectomycorrhizal fungi. Plant Soil 205: 93-98.

Marschner, H., and B. Dell. 1994. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil 159: 89-102.

Meyer, J.R., and Linderman, R.G., 1986a, Response of subterranean clover to dual inoculation with vesicular-arbuscular mycorrhizal fungi and a plant growth-promoting bacterium, Pseudomonas putida. Soil Biol. Biochem. 18: 185-190.

Meyer, J.R., and Linderman, R.G., 1986b, Selective influence on populations of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biol. Biochem. 18: 191-196.

Martin, F., Perotto, S., and Bonfante, P., 2007, Mycorrhizal fungi: A fungal community at the interface between soil and roots, pp.201-236.

Patra P, Pati BK, Ghosh GK, Mura SS, Saha A. Effect of Bio-fertilizers and Sulphur on Growth, Yield, and Oil Content of Hybrid Sunflower (Helianthus annuus. L) In a Typical Lateritic Soil. 2: 603 doi: 10. 4172/scientific reports. 603 (2013).

Paulitz, T.C., and Linderman, R.G., 1989, Interactions between fluorescent pseudomonades Plant Pathol. 49: 509-514.

Powell, J.R., Gulden, R.H., Hart, M.M., Campbell, R.G., Levy-Booth, D.J., Dunfield, K.E., Pauls, K.P., Swanton, C.J., Trevors, J.T., and Klironomos, J.N., 2007, Mycorrhizal and rhizobial colonization of genetically modified and conventional soybeans. Appl. Environ. Microbiol. 73: 4365-4367.

Rillig, M.C., Lutgen, E.R., Ramsey, P.W., Klironomos, J.N., and Gannon, J.E., 2005, Microbiota accompanying different arbuscular mycorrhizal fungal isolates influence soil aggregation. Pedobiol. 49: 251-259.

Rousseau, A., Benhamou, N., Chet, I., and Piché, Y., 1996, Mycoparasitism of the extrametrical phase of Glomus intraradices by Trichoderma harzianum. Phytopathology 86: 434-443.

St-Arnaud, M., and Elsen, A., 2005. Interaction or arbuscular-mycorrhizal fungi with soil-borne pathogens and non-pathogenic rhizosphere micro-organisms. In: In vitro culture of mycorrhizas, S. Declerck, D. -G. Strullu and J. A. Fortin eds., Springer, Berlin/Heidelberg, Germany, pp.217-231.

St-Arnaud, M., Hamel, C., Vimard, B., Caron, M., and Fortin, J.A., 1995, Altered growth of Fusarium oxysporum f. sp. chrysanthemi in an in vitro dual culture system with the vesicular arbuscular mycorrhizal fungus Glomus intraradices growing on Daucus carota transformed roots. Mycorrhiza 5: 431-438.

Supriyanto and L. Ekwey. 2000. Edible forest fungi in SE Asia - Current practices and future management. Proceedings of International Workshop BIOREFOR, Nepal, 1999. pp.123-130.

Talavera, M., Itou, K., and Mizukubo, T., 2001, Reduction of nematode damage by root colonization with arbuscular mycorrhiza (Glomus spp. ) in tomato-Meloidogyne incognita (Tylenchida: Meloidognidae) and carrot-Pratylenchus penetrans (Tylenchida: Pratylenchidae) pathosystems. Appl. Entomol. Zool. 36: 387-392.

Vigo, C., Norman, J.R., and Hooker, J.E., 2000, Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathol. 49: 509-514.

Show More Hide
Cited By:

[1] J. Rubin, J. Görres, "Potential for Mycorrhizae-Assisted Phytoremediation of Phosphorus for Improved Water Quality", International Journal of Environmental Research and Public Health, Vol. 18, p. 7, 2020