Ethnobotany and Pharmacognostical studies of *Jasminum sambac* Linn.

T. Gowdhami*, A. K. Rajalakshmi

Department of Botany, Annamalai University, Annamalai Nagar-608 002, Chidambaram, Tamil Nadu, India

E-mail address: tgowdhami@gmail.com

Keywords: Ethnobotany; Pharmacognostical; *Jasminum sambac* leaf

ABSTRACT

In the present study of *Jasminum sambac* ethnobotanical and pharmacognostical activity of *Jasminum sambac* leaf. These species of highly medicinal purpose flowers, leaves act as lactifuge, arrest the secretion of milk in the puerperal state in case of threatened abscess pharmacognostical study of leaf parts of *Jasminum sambac* has been undertaken, hence it is establish. Pharmacognostical and quality control parameters of leaf, of *Jasminum sambac* was carried out. Various microscopic characters viz., transverse section of leaf, quantitative parameters (stomatal number, stomatal index, and vein-islet and termination number) were determined for the identification of plant material. Powder microscopic studies, were also performed. Physicochemical parameters such as total Ash(13.5%), water soluble ash (6.7%) and acid-insoluble ash (8.2 %)Alcohol soluble extractive(30%) Water soluble extractive(11.8%)Moisture content(6.19%)Crude fibre content(15.1%)Swelling index (1)and Foaming index (Less than 100).

1. INTRODUCTION

Jasminum sambac Linn. (Family-Oleaceae) commonly known as Motia or lily *Jasmine* is a scandent or sub-erect shrub with young pubescent branches, broadly ovate or elliptic, opposite leaves, white, very fragrant flowers cultivated nearly throughout the tropical and sub-tropical parts of the world. The plant is much valued for its exquisitely fragrant flowers and it is estimated that nearly 400 million* flowers are annually used for the extraction of perfumed oils and 250 million for the preparation of attar .The plant is considered cool and sweet used as a remedy in case of insanity, in weakness of sight and affections of the mouth. The flowers are bitter, pungent, cooling, tonic to brain, purgative, cure tridosha, biliousness, itching sensation, allays fever, stop vomiting, useful in the diseases of eye, ear, mouth, good for skin diseases, leprosy and ulcers Kiritikar KR et al., (2003). Traditionally leaves are used in fever, cough, indolent ulcer, abdominal distention, diarrhoea, lowering the blood glucose level, regulating menstrual flow, to clean kidney waste, inflamed and blood shot eyes. Root, flowers, leaves are galactogogues therefore act as lactifuge, Kiritikar KR et al., (2003) and Nadkarni KM (2007). The plant is reported to have to have antidiabetic Upaganlawar AB et al., (2003), antitumor Radu et al.,(2009) antimicrobial Hussaini RA et al. ,(2009) antioxidant Latif FA et al.,(2010) anti-acne Harisaranraj RS et al.,(2010) suppression of puerperal lactation Shrivastav p et al.,(1988) A.N.S stimulating effect Hongratanaworakit T (2010).The plant contains friedelin, lupeol, betulin, α-amyrin, ursoic acid Rastogi RP et al.,(2002) sambacins, jasminin, sambacosate A, sambacolignoside, quercitin, isoquercitin, rutin, kaempferol, luteolin4, phenylethanol, linalool, α-terpineol Rastogi RP et al.,(2006) and Secoirridoid glucoside- sambacosate A-G along with oleoside 11- methylester Tanahashi T et al., (1988). In spite of the numerous medicinal uses attributed to this plant, pharmacognosy information about this plant has not been published. Till date, no ethno botany and pharmacognostical studies have been reported for *Jasminum sambac*. In the present investigations, ethnobotany and pharmacognostical studies viz., macroscopic, microscopic, physicochemical parameters was determined.
Vernacular Names

Bengali - Bel/Beli;
Hindi & Marathi - Mogra, Chamba, Bel, Motia, Mugra;
Sanskrit - Mallika, Ananga, Ashtapadi, Devalata, Gauri, Mudgara, Janeshta,
Telugu - Mallepuvvu, Boddumalle, Bondmalle, Gundemalle, Malle, Virajadi,
Tamil - Mallikaipu, Anangam, Iruvachi, Iruvadi, Karmugai, Malli, Maladi,
Kannada - Dundu Mallige;
Urdu - Kaliyan, Azad, Raibel, Sosan;
Punjabi - Chamba, Chambeli, Mugra;
Marathi - Mogara, Mogra, Java-Melati;
Malayalam - Cherupichakam, Chirakamulla;
Spanish - Chamela, Gamela, Jazmine de Arsbia;
Tulu - Ma lligedai;
Uriya – Belophulo, Bondumalle, Moli, Mollika.

Botanical / Scientific Classification (Kiritikar KR et al., (2003) and Anonymous)

- **Taxon**: Jasminum sambac (L.)
- **Family**: Oleaceae
- **Tribe**: Jasmineae
- **Group**: Dicot
- **Class**: Magnoliopsida – Dicotyledons
- **Subclass**: Asteridae
- **Order**: Scrophulariales
- **Genus**: Jasminum
- **Species**: Jasminum sambac (L.)

World Wide Distribution

Jasminum sambac (Linn.) Probably originated in India and was brought to Malaysia and Java around the 3rd century; since then widely cultivated throughout the Malaysian region for its heavily scented flowers and tropics of both Hemispheres. In Tamilnadu, Andhra Pradesh, Kannad, Chazipur, Sikanderpur and Karnataka, the Jasmine particularly Jasminum sambac (L.) Are commercially cultivated for flowers (Kiritikar KR et al., (2003) and ethnobotany Jasminum sambac 2010).

2. ETHNOBOTANY

Ethno botanical survey of plant has been conducted in Solan, Una, Kangra, Sirmour and Mandi district of Himachal Pradesh, India. Ethno botanical Information about the Jasminum sambac has been collected through interview and discussion with the people having the age 30-85 years. Jasminum sambac are used in various diseases like as spinal cord injury, menstrual disorder, migraine and others, mentioned in Table 1.

3. MATERIAL AND METHODS

Plant material

Fresh leaves and stem were collected from Villupuram District Alagramam (TamilNadu) in the month of March and were authenticated by Dr. N.Rajasulochana Madras University (Presidency College Autonomous) Chennai.

Instrument, Chemicals and reagents

Chloral hydrate, iodine and sodium hydroxide were procured from RFCL, Mumbai, India. Compound microscope, Camera Lucida, Stage and eyepiece micrometer, glass slides, cover slips,
watch glass and other common glassware were the basic apparatus and instruments used for the study. Microphotographs were taken using Labomed ATC-200 microscope attached with Sony digital camera.

Macroscopy of leaf
Morphological studies were done by using simple microscope to determine the shape, apex, base, margins, taste and odor of the leaves.

Microscopic studies
Microscopy was done by taking the thin hand sections of the midrib and lamina region of the leaves. The thin sections were cleared with chloral hydrate solution and stained with phloroglucinol and hydrochloric acid, then mounted in glycerin for the identification of various regions. Powder of the dried leaves was separately treated with phloroglucinol, hydrochloric acid and glycerin to study various characteristics. Similarly, the powder was also stained in iodine solution, ruthenium red solution for the identification of starch grains, calcium oxalate crystals etc. As a part of quantitative microscopy stomata number, stomata index, veinislets number and vein termination number were determined by using fresh leaves of the plant Evans WC (2005), Khandelwal KR (2006) and Kokate CK et al., (2008).

Physicochemical parameters
The moisture content, total ash, water soluble ash, acid insoluble ash, alcohol and water soluble extractive values were determined as a part of its physicochemical parameters Who Quality control methods for medicinal plant materials ABTS publisher and distributor (1998).

Powder analysis
The shade dried aerial parts of the plant were powdered and powder was passed through 100 # sieve. A small amount of powder was taken on to a microscopic slide, cleared from chlorophyll by heating with chloral hydrate solution and was mounted in 50% v/v glycerin in water. This was then observed under microscope to study the characteristic features Wallice TE (2005) and Betty PJ et al., (2000).

4. RESULTS AND DISCUSSION

Macroscopical characteristics
The leaf has prominent midrib, uniformly smooth and even lamina. Morphologically the leaf appeared simple in composition, opposite in arrangement, variable in shape usually ovate or elliptic, glabrous or nearly so, with acute apex, entire margin, petiolated (3-6mm), 4-12cm (length) by 2.4-6.5cm (breadth). The fresh leaf was green in colour with characteristic odour and slightly bitter taste (Figure.1)

Microscopical characteristics
The Transvers section (T.S.) of leaf
In transverse section the leaf appeared dorsiventral in nature showing three layers (Fig.2). It showed the presence of single layered epidermis composed of flat rectangular cells covered by thin cuticle while lower epidermis covered by thick cuticle. The uniseriate, unicellular and multicellular covering trichomes were present in the upper and lower epidermis. The glandular trichomes were multicellular with single stalk. Stomata were present only on the lower epidermis. Below the epidermis layer in the lamina the next region was mesophyll which consisted of single layered long elongated palisade cells followed by spongy parenchymatous cells. The midrib region consisted of closely packed multilayered collenchymatous cells present below the upper epidermis and above the lower epidermis. Below and above the collenchymatous cells loosely packed with intracellular spaces parenchymatous cells were present. In the centre (midrib region) ‘C’ shaped or half moon shaped vascular bundles were present composed of xylem and phloem cells.
Powder microscopy
The powder microscopy of plant (leaves) was light green in colour and showed the anomocytic stomata, spiral vessel, starch grain and calcium oxalate crystal.

Quantitative microscopy
Various quantitative microscopic parameters viz., stomatal number and index, vein islet and termination number and were determined as per the WHO guidelines for quality control methods for medicinal plant material. The results are given in Table 3.

Physicochemical parameter
Physicochemical parameter- Various parameters such as ash and extractive values, moisture content and foreign matter were established and the results are summarized in Table

5. CONCLUSION
The methods carried out in the present research work namely .The pharmacognostical and physicochemical characteristics of Jasminum sambac Linn , which could be used in identification and to distinguish the plant material, were determined and established. The ethno botanical study of plant material revels about its potential to cure various ailments. The present study may be useful information with regards to its, ethno- pharmacological potential, screening and isolation of phyto- constituent to carrying out further research.

Fig. 1 Morphlogy of Jasminum sambac Linn. (Whole Plant) and Leaf

Fig. 2 Transvers Section of leaf of Jasminum sambac
Table 1: Ethnobotany of Jasminum sambac Linn

<table>
<thead>
<tr>
<th>S.No</th>
<th>Parts</th>
<th>Preparation and administration</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Root</td>
<td>Root is boiled and the extract is used to Root of this plant is mixed with rice and used as facial powder</td>
<td>Treat diabetes mellitus Treat pimples and to get a smooth skin</td>
</tr>
<tr>
<td>2</td>
<td>Leaves</td>
<td>Young jasmine leaves boiled and the infusion is taken The dried leaves soaked in water and made in to poultice Fresh leaves are chewed. Decoction of leaves taken in empty stomach</td>
<td>Treat gallstones Indolent ulcers, ophthalmopathy skin disease, wounds healing</td>
</tr>
<tr>
<td>3</td>
<td>Flowers</td>
<td>Dried flower powder mixed with honey and taken after meal.</td>
<td>cooling, tonic to brain, purgative, cure tridosha, biliousness, itching sensation, fever, stop vomiting, skin diseases, leprosy and ulcers</td>
</tr>
</tbody>
</table>

Table 2: Physicochemical parameters of Jasminum sambac Linn (Leaves)

<table>
<thead>
<tr>
<th>S.No</th>
<th>Type of Ash</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total ash</td>
<td>13.5%</td>
</tr>
<tr>
<td>2</td>
<td>Water soluble ash</td>
<td>6.7%</td>
</tr>
<tr>
<td>3</td>
<td>Acid insoluble ash</td>
<td>8.2%</td>
</tr>
<tr>
<td>4</td>
<td>Alcohol soluble extractive</td>
<td>30%</td>
</tr>
<tr>
<td>5</td>
<td>Water soluble extractive</td>
<td>11.8%</td>
</tr>
<tr>
<td>6</td>
<td>Moisture content</td>
<td>6.19%</td>
</tr>
<tr>
<td>7</td>
<td>Crude fibre content</td>
<td>15.1%</td>
</tr>
<tr>
<td>8</td>
<td>Swelling index</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Foaming index</td>
<td>Less than 100</td>
</tr>
</tbody>
</table>
Table 3 Quantitative microscopic parameters of *Jasminum sambac* Linn (leaves)

<table>
<thead>
<tr>
<th>S.No</th>
<th>Quantitative microscopic parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stomatal number</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upper surface</td>
<td>Nil</td>
</tr>
<tr>
<td></td>
<td>Lower surface</td>
<td>150-170</td>
</tr>
<tr>
<td>2</td>
<td>Stomatal index</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upper surface</td>
<td>Nil</td>
</tr>
<tr>
<td></td>
<td>Lower surface</td>
<td>14.26</td>
</tr>
<tr>
<td>3</td>
<td>Vein islet number</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upper surface</td>
<td>9.5-10.5</td>
</tr>
<tr>
<td></td>
<td>Lower surface</td>
<td>12.5-13.5</td>
</tr>
<tr>
<td>4</td>
<td>Vein termination</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upper surface</td>
<td>25.5-26.5</td>
</tr>
<tr>
<td></td>
<td>Lower surface</td>
<td>16.5-17.5</td>
</tr>
</tbody>
</table>

References

(Received 19 March 2015; accepted 31 March 2015)