Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILNS > Volume 34 > Recent Progress in Monoaromatic Pollutants Removal...
< Back to Volume

Recent Progress in Monoaromatic Pollutants Removal from Groundwater through Bioremediation

Paper was withdrawn due to plagiarism

Full Text PDF

Abstract:

Monoaromatic pollutants such as benzene, toluene, ethylbenzene and mixture of xylenes are now considered as widespread contaminants of groundwater. In situ bioremediation under natural attenuation or enhanced remediation has been successfully used for removal of organic pollutants, including monoaromatic compounds, from groundwater. Results published indicate that in some sites, intrinsic bioremediation can reduce the monoaromatic compounds content of contaminated water to reach standard levels of potable water. However, engineering bioremediation is faster and more efficient. Also, studies have shown that enhanced anaerobic bioremediation can be applied for many BTEX contaminated groundwaters, as it is simple, applicable and economical. This paper reviews microbiology and metabolism of monoaromatic biodegradation and in situ bioremediation for BTEX removal from groundwater under aerobic and anaerobic conditions. It also discusses the factors affecting and limiting bioremediation processes and interactions between monoaromatic pollutants and other compounds during the remediation processes.

Info:

Periodical:
International Letters of Natural Sciences (Volume 34)
Pages:
62-69
Citation:
J. J. Chen et al., "Recent Progress in Monoaromatic Pollutants Removal from Groundwater through Bioremediation", International Letters of Natural Sciences, Vol. 34, pp. 62-69, 2015
Online since:
February 2015
Export:
Distribution:
References:

[1] Farhadian M., Duchez D., Vachelard C., Larroche C., Accurate quantitative determination of monoaromatic compounds for the monitoring of bioremediation processes. Bioresource Technology 100(1) (2009) 173-178.

DOI: https://doi.org/10.1016/j.biortech.2008.05.046

[2] El-Naas M.H., Acio J.A., El Telib A.E., Aerobic biodegradation of BTEX: Progresses and Prospects. Journal of Environmental Chemical Engineering 2(2) (2014) 1104-1122.

DOI: https://doi.org/10.1016/j.jece.2014.04.009

[3] Oya S., Valocchi A.J., Analytical approximation of biodegradation rate for in situ bioremediation of groundwater under ideal radial flow conditions. Journal of Contaminant Hydrology 31(3-4) (1998) 275-293.

DOI: https://doi.org/10.1016/s0169-7722(97)00066-1

[4] Martínez S., Cuervo-López F.M., Gomez J., Toluene mineralization by denitrification in an up flow anaerobic sludge blanket (UASB) reactor. Bioresource Technology 98(9) (2007) 1717-1723.

DOI: https://doi.org/10.1016/j.biortech.2006.07.046

[5] Mazzeo D.E.C., Matsumoto S.T., Levy C.E., de Angelis D.d.F., Marin-Morales M.A., Application of micronucleus test and comet assay to evaluate BTEX biodegradation. Chemosphere 90(3) (2013) 1030-1036.

DOI: https://doi.org/10.1016/j.chemosphere.2012.08.012

[6] Vila J., Tauler M., Grifoll M., Bacterial PAH degradation in marine and terrestrial habitats. Current Opinion in Biotechnology 33(0) (2015) 95-102.

DOI: https://doi.org/10.1016/j.copbio.2015.01.006

[7] Mesarch M.B., Nakatsu C.H., Nies L., Bench-scale and field-scale evaluation of catechol 2,3-dioxygenase specific primers for monitoring BTX bioremediation. Water Research 38(5) (2004) 1281-1288.

DOI: https://doi.org/10.1016/j.watres.2003.10.052

[8] Xiong W., Mathies C., Bradshaw K., Carlson T., Tang K., Wang Y., Benzene removal by a novel modification of enhanced anaerobic biostimulation. Water Research 46(15) (2012) 4721-4731.

DOI: https://doi.org/10.1016/j.watres.2012.06.036

[9] Farhadian M., Duchez D., Gaudet G., Larroche C., Biodegradation of toluene at high initial concentration in an organic-aqueous phase bioprocess with nitrate respiration. Process Biochemistry 45(11) (2010) 1758-1762.

DOI: https://doi.org/10.1016/j.procbio.2010.01.006

[10] Nakhla G., Biokinetic modeling of in situ bioremediation of BTX compounds-impact of process variables and scaleup implications. Water Research 37(6) (2003) 1296-1307.

DOI: https://doi.org/10.1016/s0043-1354(02)00491-8

[11] Seeger E.M., Kuschk P., Fazekas H., Grathwohl P., Kaestner M., Bioremediation of benzene-, MTBE- and ammonia-contaminated groundwater with pilot-scale constructed wetlands. Environmental Pollution 159(12) (2011) 3769-3776.

DOI: https://doi.org/10.1016/j.envpol.2011.07.019

[12] Bai H.-J., Zhang Z.-M., Yang G.-E., Li B.-Z., Bioremediation of cadmium by growing Rhodobacter sphaeroides: Kinetic characteristic and mechanism studies. Bioresource Technology 99(16) (2008) 7716-7722.

DOI: https://doi.org/10.1016/j.biortech.2008.01.071

[13] Balba M.T., Al-Awadhi N., Al-Daher R., Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation. Journal of Microbiological Methods 32(2) (1998) 155-164.

DOI: https://doi.org/10.1016/s0167-7012(98)00020-7

[14] Allard A.-S., Neilson A.H., Bioremediation of organic waste sites: A critical review of microbiological aspects. International Biodeterioration & Biodegradation 39(4) (1997) 253-285.

DOI: https://doi.org/10.1016/s0964-8305(97)00021-8

[15] Zarlenga A., Fiori A., Stochastic Modelling of the Length of Steady Plumes Undergoing Bioremediation. Procedia Environmental Sciences 19(0) (2013) 633-642.

DOI: https://doi.org/10.1016/j.proenv.2013.06.072

[16] Souza E.C., Vessoni-Penna T.C., de Souza Oliveira R.P., Biosurfactant-enhanced hydrocarbon bioremediation: An overview. International Biodeterioration & Biodegradation 89(0) (2014) 88-94.

DOI: https://doi.org/10.1016/j.ibiod.2014.01.007

[17] Harrington R.R., Poulson S.R., Drever J.I., Colberg P.J.S., Kelly E.F., Carbon isotope systematics of monoaromatic hydrocarbons: vaporization and adsorption experiments. Organic Geochemistry 30(8, Part 1) (1999) 765-775.

DOI: https://doi.org/10.1016/s0146-6380(99)00059-5

[18] Longoria A., Tinoco R., Vázquez-Duhalt R., Chloroperoxidase-mediated transformation of highly halogenated monoaromatic compounds. Chemosphere 72(3) (2008) 485-490.

DOI: https://doi.org/10.1016/j.chemosphere.2008.03.006

[19] Lin C.-W., Wu C.-H., Tang C.-T., Chang S.-H., Novel oxygen-releasing immobilized cell beads for bioremediation of BTEX-contaminated water. Bioresource Technology 124(0) (2012) 45-51.

DOI: https://doi.org/10.1016/j.biortech.2012.07.099

[20] Nzila A., Update on the cometabolism of organic pollutants by bacteria. Environmental Pollution 178(0) (2013) 474-482.

DOI: https://doi.org/10.1016/j.envpol.2013.03.042

[21] Vasilyeva G.K., Strijakova E.R., Nikolaeva S.N., Lebedev A.T., Shea P.J., Dynamics of PCB removal and detoxification in historically contaminated soils amended with activated carbon. Environmental Pollution 158(3) (2010) 770-777.

DOI: https://doi.org/10.1016/j.envpol.2009.10.010

[22] Sturman P.J., Stewart P.S., Cunningham A.B., Bouwer E.J., Wolfram J.H., Engineering scale-up of in situ bioremediation processes: a review. Journal of Contaminant Hydrology 19(3) (1995) 171-203.

DOI: https://doi.org/10.1016/0169-7722(95)00017-p

[23] Pontes J., Mucha A.P., Santos H., Reis I., Bordalo A., Basto M.C., Bernabeu A., Almeida C.M.R., Potential of bioremediation for buried oil removal in beaches after an oil spill. Marine Pollution Bulletin 76(1-2) (2013) 258-265.

DOI: https://doi.org/10.1016/j.marpolbul.2013.08.029

[24] Niven R.K., Ethanol in gasoline: environmental impacts and sustainability review article. Renewable and Sustainable Energy Reviews 9(6) (2005) 535-555.

DOI: https://doi.org/10.1016/j.rser.2004.06.003

[25] Brame J.A., Hong S.W., Lee J., Lee S.-H., Alvarez P.J.J., Photocatalytic pre-treatment with food-grade TiO2 increases the bioavailability and bioremediation potential of weathered oil from the Deepwater Horizon oil spill in the Gulf of Mexico. Chemosphere 90(8) (2013) 2315-2319.

DOI: https://doi.org/10.1016/j.chemosphere.2012.10.009

[26] Jeon C.O., Madsen E.L., In situ microbial metabolism of aromatic-hydrocarbon environmental pollutants. Current Opinion in Biotechnology 24(3) (2013) 474-481.

DOI: https://doi.org/10.1016/j.copbio.2012.09.001

[27] Mandelbaum R.T., Shati M.R., Ronen D., In situ microcosms in aquifer bioremediation studies. FEMS Microbiology Reviews 20(3-4) (1997) 489-502.

DOI: https://doi.org/10.1111/j.1574-6976.1997.tb00332.x

[28] Höhener P., Ponsin V., In situ vadose zone bioremediation. Current Opinion in Biotechnology 27(0) (2014) 1-7.

DOI: https://doi.org/10.1016/j.copbio.2013.08.018

[29] Jin H.M., Choi E.J., Jeon C.O., Isolation of a BTEX-degrading bacterium, Janibacter sp. SB2, from a sea-tidal flat and optimization of biodegradation conditions. Bioresource Technology 145(0) (2013) 57-64.

DOI: https://doi.org/10.1016/j.biortech.2013.02.004

[30] Zepeda A., Texier A.C., Razo-Flores E., Gomez J., Kinetic and metabolic study of benzene, toluene and m-xylene in nitrifying batch cultures. Water Research 40(8) (2006) 1643-1649.

DOI: https://doi.org/10.1016/j.watres.2006.02.012

[31] Amor L., Kennes C., Veiga M.C., Kinetics of inhibition in the biodegradation of monoaromatic hydrocarbons in presence of heavy metals. Bioresource Technology 78(2) (2001) 181-185.

DOI: https://doi.org/10.1016/s0960-8524(00)00182-6

[32] Ramos J.-L., Marqués S., van Dillewijn P., Espinosa-Urgel M., Segura A., Duque E., Krell T., Ramos-González M.-I., Bursakov S., Roca A. et al, Laboratory research aimed at closing the gaps in microbial bioremediation. Trends in Biotechnology 29(12) (2011) 641-647.

DOI: https://doi.org/10.1016/j.tibtech.2011.06.007

[33] Rozkov A., Vassiljeva I., Kurvet M., Kahru A., Preis S., Kharchenko A., Krichevskaya M., Liiv M., Käärd A., Vilu R., Laboratory study of bioremediation of rocket fuel-polluted groundwater. Water Research 33(5) (1999) 1303-1313.

DOI: https://doi.org/10.1016/s0043-1354(98)00305-4

[34] Farhadian M., Duchez D., Vachelard C., Larroche C., Monoaromatics removal from polluted water through bioreactors-A review. Water Research 42(6-7) (2008) 1325-1341.

DOI: https://doi.org/10.1016/j.watres.2007.10.021

[35] Scow K.M., Hicks K.A., Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Current Opinion in Biotechnology 16(3) (2005) 246-253.

DOI: https://doi.org/10.1016/j.copbio.2005.03.009

[36] Aleer S., Adetutu E.M., Weber J., Ball A.S., Juhasz A.L., Potential impact of soil microbial heterogeneity on the persistence of hydrocarbons in contaminated subsurface soils. Journal of Environmental Management 136(0) (2014) 27-36.

DOI: https://doi.org/10.1016/j.jenvman.2014.01.031

[37] Schreiber M.E., Bahr J.M., Nitrate-enhanced bioremediation of BTEX-contaminated groundwater: parameter estimation from natural-gradient tracer experiments. Journal of Contaminant Hydrology 55(1-2) (2002) 29-56.

DOI: https://doi.org/10.1016/s0169-7722(01)00184-x

[38] Morasch B., Höhener P., Hunkeler D., Evidence for in situ degradation of mono-and polyaromatic hydrocarbons in alluvial sediments based on microcosm experiments with 13C-labeled contaminants. Environmental Pollution 148(3) (2007) 739-748. ( Received 07 February 2015; accepted 15 February 2015 ).

DOI: https://doi.org/10.1016/j.envpol.2007.01.029
Show More Hide
Cited By:
This article has no citations.