Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILNS > ILNS Volume 31 > Influence of Chromium Treatment on Growth and...
< Back to Volume

Influence of Chromium Treatment on Growth and Nutrient Accumulation of Paddy (Oryza sativa L) Seedlings

Removed due to plagiarism

Full Text PDF


The aim of this research is to study accumulation of Chromium along with nutrients and its effect on the growth of Paddy plant (Oryza sativa.L). Thus, paddy seedlings grown in petriplates lined with filter paper undergoing, different treatments of Cr (0, 2.5, 5, 10, 25, 50, 75, 100 and 200 mg/L). After one week seedlings were removed and morphological parameters like root length, shoot length and dry weight of plants and accumulation of nutrients along with Cr content were determined. The results indicated that the concentrations more than 100 mg/L chromium cause the reduction of morphological parameters in the treatment plants rather than control plant and Cr addition in the cultures caused enhancement of chromium content paddy seedlings. Similarly nutrient accumulation also affected by increasing concentrations of chromium.


International Letters of Natural Sciences (Volume 31)
P. Sundaramoorthy and K. S. Ganesh, "Influence of Chromium Treatment on Growth and Nutrient Accumulation of Paddy (Oryza sativa L) Seedlings", International Letters of Natural Sciences, Vol. 31, pp. 7-13, 2015
Online since:
January 2015

[1] Abbassi, S.S.; Abbassi, N. and Soni, R. (1998). Heavy metals in the environment, Mittal Publication, New Delhi, India.

[2] Ali NA, Ater M.; Sunahara, Gl. and Robidoux, P.Y. (2004). Phytotoxicity and bioacuumulation of copper and chromium using barley (Hordeum Vulgare L.) in spiked artificial and natural forest soils. Ecotoxicology and environmental safety 57: 363-374.


[3] Assche F. Van and H. Clijsters: Effects of metals on enzyme activity in plants. Plant Cell Environ., 13:195-206 (1990).


[4] Bitell, J.E., D.E. Koeppe and R.J. Miller, 1974. Sorption of heavy metal cations by corn mitochondria and the effects on electron and energy transfer reactions. Physiol. Plantarum, 30: 226-230.


[5] Black, C.A., 1965. In: Methods of Soil Analysis Part 2. Chemical and Microbiological Properties, American Society of Agronomy, Inc., Madison, Wisconsin, p.242.

[6] Cervantes, C.; Campos-Garcia, J.; Debars, S.; Gutierrez-Corona, F.; Loza-Tavera, H.; Carlos-Tarres-Guzman, M. and Moreno-Sanchez, R. (2001). Interaction of chromium with Microgenesis and plants. FEMS Microbiol. Rev., 25: 335-347.


[7] Chatterjee, J. and Chatterjee, C. (2000). Phytoxicity of cobalt, chromium and copper in Cauliflower. Environ. Pollut., 109:69-74.

[8] Dua, A. and S.K. Sawhney, 1991. Effect of chromium on activities of hydrolytic enzymes in germinating pea seeds. Environ. Exp. Bot., 31: 133-139.


[9] Dube, B.K.; Tewari, K.; Chatterjee, J. and Chaterejee, C. (2003). Excess chromium alters uptake and translocation of certain nutrients in citrullus. Chemosphere 53: 1147-1153.


[10] Jackson, M.L., 1958. Soil chemical analysis. Prentice Hall of India Private Limited, New Delhi, pp.22-31.

[11] Krishnamurthy, S. and Wilkens, M.M. (1994). Environmental chemistry of Chromium. Northeasteren geology, 16: 14-17.

[12] Lakshmi, S. and P. Sundaramoorthy, 2003. Effect of chromium on germination and biochemical changes in blackgram. J. Ecobiol., 15: 7-11.

[13] Lalitha, K., N. Balasubramanian and S. Kalavathy, 1999. Studies of impact of chromium on Vigna unguiculata (L.) Walp. var. Long. J. Swamy Bot. Cl., 16: 17-20.

[14] Lanoreaux, R.J.W.R. and S. Chaney, 1978. The effect of cadmium on net photosynthesis, transpiration and dark respiration of excised silver maple leaves. Plant Physiol., 43: 231-236.


[15] Pillay, A. E.; Williams, J. R.; EL Mardi, M. O.; AI-Lawati, S.M.H.; AI-Hadabbi, M. H. and AI-Hamdi, A.(2003). Risk assessment of chromium and arsenic in date palm leaves used as livestock feed. Environ. Intl., 1048:1-5.


[16] Piper, C., 1966. Soil and plant analysis. Asian Hans Publishers, Bombay, pp.11-36.

[17] Rai, U. N.; Tripathi, R. D. and Kumar, N. (1992). Bioaccumulation of chromium and toxicity on growth, photosynthetic pigments, photosynthesis, in vivo nitrate reductase activity and protein content in chlorococcalear green alga, Glaucocystis nostochinearum ltzigsohn. Chromosphere, 25:721-732.


[18] Rout, G.R., S. Samantary and P. Das, 1997. Differential chromium tolerance among eight mungbean cultivars grown in nutrient culture. J. Plant Nutr., 20: 473-483.


[19] Samantary, S. and B. Deo, 2004. Studies on chromium toxicity in mung bean (Vigna radiata L.). Adv. Plant Sci., 17: 189-194.

[20] Sankar Ganesh, K., AL.A. Chidambaram, P. Sundaramoorthy, L. Baskaran and M. Selvaraj, 2006a. Influence of chromium and cadmium on germination, seedling growth and photosynthetic pigments of soybean (Glycine max L. Merr.). Indian J. Environ. Ecoplan., 12: 291-296.

[21] Sankar Ganesh, K., L. Baskaran, S. Rajasekaran, K. Sumathi, AL.A. Chidambaram and P. Sundaramoorthy, 2008. Chromium stress induced alterations in biochemical and enzyme metabolism in aquatic and terrestrial plants. Colloid. Surface. B, 63: 159-163.


[22] Sankar Ganesh, K., P. Sundaramoorthy and AL.A. Chidambaram, 2006b. Chromium toxicity effect on blackgram, soybean and paddy. Poll. Res., 25: 257-261.

[23] Shanker, A.K., M. Djanaguiraman, R. Sudhagar, C.N. Chandrashekar and G. Pathmanabhan, 2004a. Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in greengram (Vigna radiata (L.) R. Wilczek, cv. CO 4) roots. Plant Sci., 166: 1035-1043.


[24] Sharma, D. C.; Chatterjee, C. and Sharma, C. P. (1995). Chromium accumulation by barley seedlings (Hordeum vulgare L,). Journal of experimental botany 25: 241-251.

[25] Sharma, D.C. and Pant R. C. (1994). Chromium uptake its effects on certain plant nutrients in maize (Zea mays L. CV Ganga 5).Journal of environmental science and health, Part A , 29: 941-948.


[26] Sidharthan, M. and A.S. Lakshmanachary, 1996. Efficacy of chromium on germination, growth and biochemical studies on Glycine max var. CO 1. In: Jha, P.K., G.P.S. Ghirmire, S.B. Kamacharya, S.R. Baral and P. Lacoul (eds.), Environment and Biodiversity, Ecological Society, Katmandu, Nepal, pp.326-328.

[27] Subramani, A., P. Sundaramoorthy, S. Saravanan, M. Selvaraj and A.S. Lakshmanachary, 1999. Screening of groundnut cultivars for chromium sensitivity. Ecoprint, 6: 61-65.

[28] Sundaramoorthy, P., K. Sankar Ganesh, L. Baskaran, K. Sumathi and S. Rajasekaran, 2006b. Germination behaviour of some agricultural crops under chromium treatment. Bull. Biol. Sci., 4: 99-101.

[29] Sundaramoorthy, P., K. Sankar Ganesh, S. Rajasekaran, L. Baskaran and K. Sumathi, 2006a. Studies on the effect of chromium on germination and growth of soybean (Glycine max) cultivars. Bull. Agr. Sci., 4: 91-94.

[30] Williams, C.H. and V. Twine, 1960. In: Peach, K. and M.V. Tracey (eds.), Modern Methods of Plant Analysis, Vol. 5, Springer Verlag, Berlin, pp.3-5.

[31] Yoshida, S., D. Fordo, J. Cork and K. Gomez, 1972. Laboratory manual for physiological studies of rice, 3rd edn., The International Rice Research Institute, Philippines, pp.11-23.

[32] Zayed A. M. and Terry N. (2003). Chromium in the environment: factors affecting biological remediation. Plant and soil 249: 139-156.

[33] Zayed, A.; Lytle C.M.; Qian, J.H. and Terry, N. (1998). Chromium accumulation, translocation and chemical speciation in vegetable crops, Planta 206: 293-299.

Show More Hide
Cited By:
This article has no citations.