Effects of NaCl, CaCl\textsubscript{2} and their combination of salt on seed germination and seedling growth of \textit{Lycopersicum esculentum} L.

S. Sivasankaramoorthy
Department of Botany (DDE), Annamalai University, Annamalai Nagar - 608 002, India
E-mail address: drsivasankarmoorthy@gmail.com

ABSTRACT

To compare the effect of NaCl, CaCl\textsubscript{2} and their combinations on germination and early seedling growth stages of \textit{Lycopersicum esculentum} L., were studied under pot experiments 2008. Results indicated that significant increases were recorded in percentage of germination, seedling fresh and dry weights, seedling length, water content, catalase activity and photosynthetic pigments (chlorophyll a, b and total chlorophylls as well as carotenoids) under the low level concentration (20 mM) of NaCl or CaCl\textsubscript{2} and their combination (1:1). On other hand increasing salt concentration in nutrient solution caused significant decrease in all of these parameters. The great reduction occurred under high salinity level of NaCl (50 mM). Meanwhile, peroxidase activity increased significantly with increasing salinity levels from 20 mM to 50 mM of both applied salinity types. Besides, peroxidase activity under NaCl salinity showed a marked increase followed by NaCl + CaCl\textsubscript{2} (1:1) and CaCl\textsubscript{2} at 50 mM.

Keywords: \textit{Lycopersicum esculentum} L.; sodium chloride; calcium chloride; chlorophyll; catalase and peroxidase

1. INTRODUCTION

\textit{Lycopersicum esculentum} L. is one of the most important stable crops for the world human nutrition. The arid and semi-arid conditions as well as less availability of fresh water have inflicted the saline condition in these provinces and are threatening the productivity of this crop, which is considered as moderately sensitive to salt stress (Lycoskoufis et al., 2005). In general, seed germination and early seedling growth are considered as the most sensitive stages to salinity stress (Ashraf and Foolad, 2005) in most of the crops than the growth of established. Seed germination and seedling growth of \textit{Lycopersicum esculentum} L., like other crops, were negatively affected by salinity stress (Khan et al., 2006 and Bassuony et al., 2008). Germination and emergence of \textit{Lycopersicum esculentum} L., seeds are also slow and non-uniform under normal as well as stress conditions (Demir and Okcu, 2004). Soil salinity, if not property managed, causing decrease in germination rate and germination percentage of \textit{Lycopersicum esculentum} L.

The salt damage to the seed germination is attributed to various factors such as reduction in water availability, changes in mobilization of stored reserves and affecting
structural organization of proteins (Almansouri et al., 2001). The seeds require higher amount of water uptake during the germination under the salt stress due to the accumulation of the soluble solutes around the seeds, which increases the osmotic pressure. This causes excessive uptake of the ions which results in toxicity in the plant. Moreover, water potential gradient (reduced water availability) between the external environment and the seeds also inhibits the primary root emergence (Delachiave and DePinho, 2003). The most important process that is affected in plants, growing under saline conditions, is photosynthesis.

Reduced photosynthesis under salinity is not only attributed to stomata closure leading to a reduction of intercellular CO$_2$ concentration, but also to non-stomata factors. There is strong evidence that salt affects photosynthetic enzymes, chlorophylls and carotenoids (Stepien and Klobus, 2006). In addition, salinity causing disturbance of membrane integrity (Hasegawa et al., 2000) activities of enzymes and damaged photosynthetic components (Winston, 1990). Moreover, plants have the ability to scavenge/detoxify reactive oxygen species by producing different types of antioxidants (enzymatic and non-enzymatic). Enzymatic antioxidants such as catalase, peroxidase, (Prochazkova and Wilhlmova, 2007 and Ashraf, 2009). Therefore, the present study was planned to determine the effects of NaCl, CaCl$_2$ salinity and their combinations on germination and growth of *Lycopersicum esculentum* L.

2. MATERIALS AND METHODS

The experiment was carried out in the laboratory of the Agricultural Botany Dept., Fac. of Agriculture, Mansoura Univ. during the growing season 2008, to study the effect of NaCl of CaCl$_2$ and their combination (1:1 w/w) on germination and early seedling growth stages of sweet pepper (*Capsicum annuum* L, cv Orlando), a hybrid ‘California Wonder’. The seeds used in this investigation were secured from the Gohara Co. Cairo, Egypt. Salinity stress was induced by Sodium Chloride (NaCl), Calcium Chloride (CaCl$_2$) and their recombination, NaCl: CaCl$_2$ (1:1 w/w) from EL-Gomhoria Co., Egypt and were used at the concentrations of 2000 and 4000 ppm each.

A homogenous lot of sweet pepper seeds were placed in 100 ml beakers and 20 ml of 1 % sodium hypochlorite was added for sterilization. These were left in the solution for 5 min followed by washing under running tap water and ionized water twice, then soaked (24 hours) in distilled water. After soaking, the sterilized seeds were divided into 7 sets (7 salinity levels), then placed in glass Petri dishes (11 cm) (25 seeds/dish) with a double layer. Of Whatman No. 1 filter paper. The first set was moistened with 10 ml nutrient Cooper solution (Cooper, 1979) E.C., (2.0 dSm$^{-1}$) served as control. The six remainder sets were salinized with 10 ml nutrient solution adding salts. Measuring the electrical conductivity by digital conductivity meter Lutron CD-4301.

The dishes were left in an incubator in the bark for seed germination at 25 ±2 °C and 90 % relative humidity, then the dishes were covered with aluminum foils for darkens. In order to avoid water losses, 5 ml of the nutrient solution were added to Petri dishes, every 5 days. Thiram was added to the solution at a concentration of 2 % (w/v) to control the fungi infection. The experiment was repeated two times and arranged in a completely randomized block design with three replicates.
a. Seeding fresh and dry weight (g/5 seedling).

b. Seedling length (cm).

c. The seedling water content (WC) expressed as (mg g\(^{-1}\)) was calculated from FW and DW values (Song and Fujiyama, 1998) using the following equation: WC = [(FW-DW)/FW] +1000. Where WC is the water content (g g\(^{-1}\)); FW and DW are the fresh weight (g seedling\(^{-1}\)) and dry weight of the (g seedling\(^{-1}\)) of the seedlings plant, respectively.

d. **Enzymatic activity:** the enzyme extraction was done as recommended by Maxwell and Bateman (1967). One gram of fresh sample (cotyledons) was ground with 10 ml 0.1 M Na-phosphate buffer at pH 7.1 in a lab mortar. The homogenate was transferred to centrifuge tubes and was centrifuged at 4C for 15 min at 15000 rpm in laboratory refrigerated centrifuges model SIGMA 4K15. The supernatant was made up to a known volume with the same buffer and used for enzyme assay.

d. 1. **Peroxidase activity (EC1.11.1.7):** the activity of Peroxidase activity was determined with a (Spekoll 11) spectrophotometer. The activity of Peroxidase activity was determined according to the method described by Allam and Hollis (1972). This method depends on measuring the oxidation of pyrogallol to pyrogallin in the presence of hydrogen peroxide (H\(_2\)O\(_2\)) at 425 nm. The sample cuvette contained 500 µl of 0.1 M potassium phosphate buffer (pH 7.0) + 300 µl of 0.05 M pyrogallol (6.3 g/L) + 100 µl of 1.0 % H\(_2\)O\(_2\) + 100 µl enzyme extract. Readings were recorded every 30 seconds for 5 minutes at 27 ±2 °C. The activity was expressed as ∆A\(_{410}\) g\(^{-1}\) min\(^{-1}\).

d. 2. **Catalase activity (EC1.11.1.6):** the enzymatic activity of CAT was measure according to Aebi (1984). About 3 ml reaction mixture containing 1.5 ml of 100 mM potassium phosphate buffer (pH 7.0), 0.5 ml of 75 mM H\(_2\)O\(_2\), 0.05 ml enzymes extraction and distilled water to make up the volume to 3 ml. The reaction started by adding H\(_2\)O\(_2\) and a decrease in absorbance was recorded at 240 nm for 1 min. Enzymes activity was computed by calculating the amount of H\(_2\)O\(_2\) decomposed. Each enzyme activity was expressed as enzyme unit per gram fresh weight of leaf.

e. **Photosynthetic pigments (mg/g FW):** fresh leaf samples (0.05 g) were extracted by methanol for 24 hours at laboratory temperature after adding a trace from sodium carbonate (Robinson et al., 1983), then chlorophyll a, b and carotenoids were determined spectrophotometrically (Spekol II) at wave lengths 452, 650, 665 nm. The quantities of total chlorophylls, chlorophyll a, carotenoids concentration (mg/g) in leaves were determined by the equations proposed by Mackiny (1941).

\[
\text{Total Chlorophyll} = (25.5^* E_{650} + 4^* E_{665})^{1/5} \\
\text{Chlorophyll a} = (16.5^* E_{665} - 8.3^* E_{650})^{1/5} \\
\text{Chlorophyll b} = (33.8^* E_{650} - 12.5^* E_{665})^{1/5} \\
\text{Carotenoids} = (4.2^* E_{452.5}) - (0.0264^* \text{Chl. a}) - (0.496^* \text{Chl. b})^{1/5}
\]
3. RESULTS AND DISCUSSION

1. Germination percentage: Generally, increasing salinity causes a decrease in maize germination; this might be due to the toxic effects of Na\(^+\) and in the process of germination (Khajeh-Hosseini et al., 2003). It alters the imbibitions of water by seeds due to lower osmotic potential of germination media, causes toxicity which changes the activity of enzymes of nucleic acid metabolism changes protein metabolism, interrupts hormonal balance, and reduces the utilization of seed reserve food (Gomes-Filho et al., 2002). Primed seeds of maize might have better competency for water absorption from the growing media that enabled metabolic activities in seeds during germination process of a start much earlier than radical and plumule appearance (Elouaer and Hannachi., 2012).

Figure 1. Germination percentage of *Lycopersicum esculentum* under normal or saline condition (NaCl, CaCl\(_2\) and their combination) after 15 days from sowing.

2. Seedling growth: The data illustrated in Figures (2.5) and shown in plate (1) indicate that fresh and dry weights, seedling length as well as water content after 14 days were increased significantly under low levels 2000 ppm of all salinity types. On the other hand, the increasing salt concentration in nutrient cooper solution caused significant decrease in fresh and dry weights as well as seedling length but seedling water content showed no-significant effect. The great reduction occurred under high salinity level of NaCl. In the present investigation, Reduced seedling length under saline condition may be due to accumulation of toxic ions, that facilitates the intake ions in sufficient amounts to be toxic for the embryonic activities due to the influence of the cations more anions, the entry of ions to the seeds that might have been toxic to the embryo or the developing seedlings (Almodares et al., 2001) and / or inhibition of the uptake of several essential nutrients causing nutritional or ionic imbalance (Taamalli et al., 2004) and /or disturbance in metabolic metabolism leading to an increase in phenolic compounds (Ayaz, et al., 2000) and / or which led to decreasing both cell division and cell elongation.
Salinity induced osmotic cell enlargement depending on soluble accumulation and its effect on cell size and number of cells per unit area (Greenway, 1963). The effects of salinity on seedling shoot and root length may be due to the negative effects of salinity on meristematic cell division and elongation as well as root penetration (Hatung, 2004) and due to reduced cell division or cell enlargement caused by salinity stress (Hawker and Walker, 1978).

Figure 2. Seedling length (cm) of *Lycopersicum esculentum* under normal or saline condition (NaCl, CaCl$_2$ and their combination) after 15 days from sowing.

The reduced seedling fresh weight and dry weight under salt stress conditions could be attributed to the water potential and osmotic adjustments as result of increased ionic concentration in their shell or bound water (Schwarz, 1985) and/or osmotic adjustment needed to keep root water potential lower than that of the external medium, energy must be expended to create such osmotic adjustment and this may lead to seedling growth reduction (Yeo, 1983) and/or might be attributed to the osmotic effect resulting from salt stress which causes disturbances in water balance and inhibits apical growth and internal imbalance (Younis et al., 2003 and Hegazy, 2009).

And/or inhibits cytokines biosynthesis and hormonal unbalances, reducing water content and some plant nutrients uptake as well as biosynthesis and hormonal unbalance, reducing water content and some plant nutrients uptake as well as biosynthesis of α-tocopherol, ascorbic acid and net photosynthetic rate accompanied with high respiration rate were also reported under stress conditions (Tripathi et al., 2007) and/or may be due to toxic effects unbalanced nutrient uptake by the seedlings (Hajibagheri et al., 1989) and/or decreases in water content have been communicated for many seedlings growing under salinity (Meloni et al., 2008).
Figure 3. Fresh weight (g/5 seedling) of *Lycopersicum esculentum* under normal or saline condition (NaCl, CaCl$_2$ and their combination) after 15 days from sowing.

![Graph showing fresh weight of Lycopersicum esculentum under different salinities.](image)

Figure 4. Dry weight (g/5 seedling) of *Lycopersicum esculentum* under normal or saline condition (NaCl, CaCl$_2$ and their combination) after 15 days from sowing.

![Graph showing dry weight of Lycopersicum esculentum under different salinities.](image)

The water content, although a convenient and widely used methods of assessing plant water status, is not useful indicator of turgor in salt-treated plants undergoing osmotic adjustment. In most plants, especially halophytes, the solute content of cells at high salinity is higher than in non-saline condition, due largely to accumulation of ions (e.g. Na$^+$ and Cl$^-$).
and organic solutes. Therefore, during the rehydration to establish water content, the higher solute content in salt-treated than in untreated cotyledons causes a greater water uptake in the former than the latter. Thus, this fact results in an apparently low RWC under salinity (Munnus et al., 2006).

Figure 5. Seedling water content (mg/g⁻¹) of *Lycopersicum esculentum* under normal or saline condition (NaCl, CaCl₂ and their combination) after 15 days from sowing.

3. Peroxidase and Catalase activity:

The data illustrated in (Figure 6) indicate that all applied salinity types increased significantly peroxidase activity of *Lycopersicum esculentum* seedling and high level of salinity was more effective in this respect. Moreover, peroxidase activity under NaCl stress showed a marked increase followed by NaCl + CaCl₂ (1:1) and CaCl₂.

Concerning the catalase activity (Figure 7) under low level of all applied salinity types (20 mM) increased significantly catalase activity and NaCl + CaCl₂ (1:1) proved to be more effective in this respect, followed by CaCl₂ and NaCl. On the other hand, increasing salinity levels to 50 mM decreased significantly catalase activity and the great reduction occurred under NaCl stress. Salt stress produced ROS is a common phenomenon which can interact with a number of destructive processes causing cellular damage (Ashraf, 2009), cell signaling, gene regulation, senescence, programmed cell death, pathogen defense, and others (Gechev et al., 2006).

Present results, the antioxidant enzymes peroxidase activity and catalase activity were increased under NaCl salinity (Figure 6) and further enhanced due to CaCl₂ treatment. These results are in agreement with those reported by (Jaleel et al., 2007). The plants defend against these reactive oxygen species by induction of activities of certain antioxidative enzymes such as catalase, peroxidase (Mittova et al., 2003). Catalase is specific to a great extent for H₂O₂, and removed excess H₂O₂ before it can leak out into other parts of the cell (Ali and Alqurainy, 2000). The high concentration of H₂O₂, while low concentration of H₂O₂, was mainly scavenged by peroxidase activity during the period of oxidation of relative substances.
Figure 6. Peroxidase activity (unit/g FW) of seedling *Lycopersicum esculentum* as affected by salinity (NaCl, CaCl\(_2\) and their combination) after 15 days from sowing.

![Graph showing peroxidase activity](image)

Figure 7. Catalase activity (unit/g FW) of seedling *Lycopersicum esculentum* as affected by salinity (NaCl, CaCl\(_2\) and their combination) after 15 days from sowing.

![Graph showing catalase activity](image)

When peroxidase activity and catalase activity were consistent and in harmony with one another, free radicals from ROS in plants could be kept at a low level which exerted the plant growth and metabolize naturally (Jiang, 1999). In addition, Turhan et al., (2006) proposed that the peroxidase activity was increased coordinately in response to salt. In addition, Li (2009) revealed that, on tomato seedling the catalase activity increased under (100 mM NaCl), but the catalase activity decreased under 200-300 mM NaCl. Moreover,
Wang, et al., (2009) on alfalfa, found that salinity stress increased catalase activity. On the other hand, Noreen and Ashraf (2009) revealed the salt stress enhanced the activities of peroxidase activity while, decreased the catalase activity in pea. Also, Hassanein et al., (2009) found that, activity level of peroxidase activity enzyme progressively increased with increasing salinity levels, while the behavior of catalase activity showed an opposite response. In addition, Gadalla (2009) found that NaCl reduced the activity of catalase activity and peroxidase activity.

4. Photosynthetic pigments concentrations: The data illustrated in Figures (9-12) clearly show that low salinity level (20 mM) of all applied salinity types {NaCl, CaCl\textsubscript{2} and their combinations 1:1 (w: w)} caused a high significant increase in the photosynthetic pigments concentrations (chlorophyll a, b and total chlorophylls as well as carotenoids). In addition, NaCl+CaCl\textsubscript{2} (1:1) caused a greater increase in photosynthetic pigments concentrations followed by CaCl\textsubscript{2} and NaCl. Salinity leads to an increase in free radicals in chloroplast and this causes destruction of chlorophyll molecules by then resulting in reduced photosynthesis and growth (Lichtenthalier et al., 2005). In the present study, salt stress reduced the total chlorophyll content of cucumber seedlings by 50 % at both the NaCl levels and this could be associated with seedling growth inhibition observed under salinity stress. As compared to non-primed seedlings, priming of seeds with CaCl\textsubscript{2} doubled the chlorophyll content under 100 mM NaCl whereas at 150 mM NaCl there was no significant increase. According to Montesano and lersel (2007), calcium prevents the toxic effects of NaCl on photosynthesis and this appeared to be the reason for priming induced improved chlorophyll content of seedlings of Cucumber sativa observed in our study, which is in agreement with Afzal et al., (2012). Yeo et al., (1991).

Figure 8. Chlorophyll a concentration (mg/g FW) of seedling *Lycopersicum esculentum* as affected by salinity (NaCl, CaCl\textsubscript{2} and their combination) after 15 days from sowing.
On the other hand, photosynthetic pigments concentrations decreased gradually with increasing salinity levels from 20 to 50 mM. The great reduction in photosynthetic pigments occurred under NaCl at high salinity levels (50 mM). While, CaCl$_2$ at 50 mM increased significantly the total carotenoids as compared with other salinity types. These results are in agreement with those recorded by Parida et al., (2004). Who reported that photosynthetic rate increased at low salinity level and decreased at the higher ones.

Figure 9. Chlorophyll b concentration (mg/g FW) of seedling *Lycopersicum esculentum* as affected by salinity (NaCl, CaCl$_2$ and their combination) after 15 days from sowing.

![Chlorophyll b concentration](chart1.png)

Figure 10. Total chlorophyll concentration (mg/g FW) of seedling *Lycopersicum esculentum* as affected by salinity (NaCl, CaCl$_2$ and their combination) after 15 days from sowing.

![Total chlorophyll concentration](chart2.png)
The reduction in photosynthetic pigments concentration under high salinity levels may be due to inhibitory effect of chloride on the activity of Fe containing enzymes, cytochrome oxidase which may decrease the rate of chlorophyll, biosynthesis and their accumulation (Helay et al., 1984) and/or enhancing the activity of chlorophyll degrading enzyme chlorophyllase (Mishra and Sharma, 1994) and/or oxidation of chlorophyll and decreased its concentration (Pell and Dann, 1991) and/or the toxic action of NaCl on the biosynthesis of pigments, increasing their degradation and/or maintaining damage of the chloroplast thylakoid (Hashem, 2000).

4. CONCLUSION

It could be concluded that low salinity level (20 mM NaCl) had a no effect to the Lycopersicum esculentum plants, on the other hand 50 mM NaCl significantly reduce the growth parameters. Application of CaCl₂ to NaCl stressed Lycopersicum esculentum significantly alleviated the effect of salinity stress.

References

(Received 22 July 2014; accepted 02 August 2014)