This work is licensed under a
Creative Commons Attribution 4.0 International License
Abedin MJ, Cresser MS, Meharg AA, Feldmann J., Cotter-Howells J (2002) Arsenic accumulation and metabolism in rice (Oryza sativa L. ). Environ Sci Technol 36: 962-968.
APHA. 1985. Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC.
Azad MAK, Islam MN, Alam A, Mahmud H, Islam MA, Karim MR, Rahman M (2009) Arsenic uptake and phytotoxicity of T-aman rice (Oryza sativa L. ) grown in the As- amended soil of Bangladesh. Environmentalist 29: 436-440.
Bhattacharya P, Mukherjee AB, Bundschuh J, Zevenhoven R., Loeppert R. (eds. ) (2007) Arsenic in Soil and Groundwater Environment: Biogeochemical Interactions, Health Effects and Remediation. Elsevier Press, Amsterdam, UK.
Bhattacharya S, Gupta K, Debnath S, Ghosh UC, Chattopadhyay DJ, Mukhopadhyay A (2012).
Chakraborti D, Rahman MM, Paul K, Chowdhury UK, Sengupta MK, Lodh D, Chanda CR, Saha KC, Mukherjee SC (2002) Arsenic calamity in the Indian subcontinent: what lessons have been learned? Talanta 58: 3-22.
Chakraborti D, Sengupta MK, Rahaman MM (2004) Groundwater arsenic contamination and its health effects in the Ganga-Meghna-Brahmaputra Plain. J Environ Monitor 6: 74-83.
Das DK (2007).
Duxbury JM, Panaullah G (2007) Remediation of arsenic for agriculture sustainability, food security and health in Bangladesh. Water Service, FAO, Rome.
Hartley-Whitaker J, Ainsworth G, Vooijs R, Bookum WT, Schat H, Meharg AA (2001) Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus. Plant Physiol 126: 299-306.
Huang R, Gao S, Wang W, Staunton S, Wang G (2006) Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian Province, southeast China. Sci Total Environ 368: 531-541.
Kraemer S (2004) Iron oxide dissolution and solubility in the presence of siderophores. Aquat Sci Res 66: 3-18.
Liu WJ, Zhu YG, Smith SA, Smith SE (2004) Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L. ) grown in solution culture? J Exp Bot 55: 1707-1713.
Meharg AA, Rahman MM (2003) Arsenic contamination in Bangladesh paddy field soils: implication for rice contribution to arsenic consumption. Environ Sci Technol 37: 229-234.
Mukherjee A, von Brömssen M, Scanlon BR, Bhattacharya P, Fryar AE, Hasan MA, Ahmed KM, Chatterjee D, Jacks G, Sracek O., J Contam Hydrol 99 (2008) 31-48.
Nissen P, Benson AA (1982) Arsenic metabolism in fresh tion of arsenic by phytochelatins in plants. Plant Physiol 122: 793-801.
Norra S, Berner ZA, Agarwala P, Wagner F, Chandrasekharam D, Stüben D (2005) Impact of irrigation with As rich groundwater on soil and crops: a geochemical case study in West Bengal Delta Plain, India. Appl Geochem 20: 1890-(1906).
Pal A, Nyack B, Das B, Hossain MA, Ahameda S, Chakraborti D (2007).
Rahman MA, Hasegawa H, Rahman MM, Islam MN, Miah MAM, Tasmin A (2007) Effect of arsenic on photosynthesis, growth and yield of five widely cultivated rice (Oryza sativa L. ) varieties in Bangladesh. Chemosphere 67: 1072-1079.
Rahman MA, Hasegawa H, Rahman MM, Rahman MA, Miah MA (2007) Accumulation of arsenic in tissues of rice plant (Oryza sativa L. ) and its distribution in fractions of rice grain. Chemosphere 69: 942-948.
Rao KP, Vani G, Kumar K, Wankhede DP, Misra M, Gupta M, Sinha AK (2011) Arsenic stress activates MAP kinase in rice roots and leaves. Arch Biochem Biophys 506: 73-82.
Robberecht H, Van Cauwenbergh R, Bosscher D, Cornelis R, Deelstra H (2002) Daily dietary total arsenic intake in Belgium using duplicate portion sampling and elemental content of various foodstuffs. Eur Food Res Technol 214: 27-32.
Roychowdhury T, Tokunaga H, Uchino T, Ando M (2005) Effect of arsenic- contaminated irrigation water on agricultural land soil and plants in West Bengal, India. Chemosphere 55: 799-810.
Roychowdhury T (2008) Impact of sedimentary arsenic through irrigated groundwater on soil, plants, crops and human continuum from Bengal delta: special reference to raw and cooked rice. Food Chem Toxicol 46: 2856-2864.
Schoof RA, Yost LJ, Eickhoff J, Crecelius EA, Cragin DW, Meacher DM, Menzel DB (1999) A market basket survey of inorganic arsenic in food. Food Chem Toxicol 37: 839-846.
Sharples JM, Meharg AA, Chambers SM, Cairney JWG (2000) Mechanism of arsenate resistance in the Ericoid mycorrhizal fungus Hymenoscyphusericae. Plant Physiol 124: 1327-1334.
Shukla SR, Pai RS (2005) Adsorption of Cu(II), Ni(II) and Zn(II) on modified jute fibres. Bioresour Technol 96: 1430-1438.
Tang T, Miller DM (1991) Growth and tissue composition of rice grown in soil treated with inorganic copper, nickel, and arsenic. Commun. Soil Sci Plant Anal. 22: 2037-(2045).
Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25: 158-165.
Umitsu M (1993) Late Quaternary sedimentary environments and landforms in the Ganges Delta. Sediment Geol 83: 177-186.
Williams PN, Vilada A, Deacon C, Raab A, Figuerola J, Green AJ (2007) Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ Sci Technol 41: 6854-6859.
Xiong XZ, Li PJ, Wang YS, Ten H, Wang LP, Song LP (1987) Environmental capacity of arsenic in soil and mathematical model. Chinese J Environ Sci 8: 8-14. ( Received 15 July 2014; accepted 22 July 2014 ).
[1] N. Khan, B. Seshadri, N. Bolan, C. Saint, M. Kirkham, S. Chowdhury, N. Yamaguchi, D. Lee, G. Li, A. Kunhikrishnan, F. Qi, R. Karunanithi, R. Qiu, Y. Zhu, C. Syu, Vol. 138, p. 1, 2016
DOI: https://doi.org/10.1016/bs.agron.2016.04.002[2] M. Saleem, S. Fahad, M. Rehman, S. Saud, Y. Jamal, S. Khan, L. Liu, "Morpho-physiological traits, biochemical response and phytoextraction potential of short-term copper stress on kenaf (Hibiscus cannabinus L.) seedlings", PeerJ, Vol. 8, p. e8321, 2020
DOI: https://doi.org/10.7717/peerj.8321[3] M. Saleem, S. Ali, M. Rehman, M. Hasanuzzaman, M. Rizwan, S. Irshad, F. Shafiq, M. Iqbal, B. Alharbi, T. Alnusaire, S. Qari, "Jute: A Potential Candidate for Phytoremediation of Metals—A Review", Plants, Vol. 9, p. 258, 2020
DOI: https://doi.org/10.3390/plants9020258[4] M. Saleem, S. Ali, S. Irshad, M. Hussaan, M. Rizwan, M. Rana, A. Hashem, E. Abd_Allah, P. Ahmad, "Copper Uptake and Accumulation, Ultra-Structural Alteration, and Bast Fibre Yield and Quality of Fibrous Jute (Corchorus capsularis L.) Plants Grown under Two Different Soils of China", Plants, Vol. 9, p. 404, 2020
DOI: https://doi.org/10.3390/plants9030404[5] M. Saleem, S. Ali, S. Hussain, M. Kamran, M. Chattha, S. Ahmad, M. Aqeel, M. Rizwan, N. Aljarba, S. Alkahtani, M. Abdel-Daim, "Flax (Linum usitatissimum L.): A Potential Candidate for Phytoremediation? Biological and Economical Points of View", Plants, Vol. 9, p. 496, 2020
DOI: https://doi.org/10.3390/plants9040496[6] E. Costa-Neto, N. Grabowski, "Edible arachnids and myriapods worldwide – updated list, nutritional profile and food hygiene implications", Journal of Insects as Food and Feed, p. 1, 2020
DOI: https://doi.org/10.3920/JIFF2020.0046