Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > ILCPA Volume 9 > Calculation of Electrochemical Parameters Starting...
< Back to Volume

Calculation of Electrochemical Parameters Starting from the Polarization Curves of Ferrocene at Glassy Carbon Electrode

Removed due to plagiarism

Full Text PDF


This work is a contribution to the calculation of electrochemical parameters from the polarization curves of ferrocene. The parameters are: The anodic (Epa) and the cathodic (Epc) peak potentials, as well as the corresponding anodic (ipa) and cathodic (ipc) peak currents, were obtained at different scan rates (0.05, 0.10, 0.30, 0.50 V.s-1). The half-wave potentials (E1/2) of the couple in the investigated solvents have been evaluated. The diffusion coefficients (D) have been calculated using the Randles-Sevcik equation.


International Letters of Chemistry, Physics and Astronomy (Volume 9)
N.S. Neghmouche and T. Lanez, "Calculation of Electrochemical Parameters Starting from the Polarization Curves of Ferrocene at Glassy Carbon Electrode", International Letters of Chemistry, Physics and Astronomy, Vol. 9, pp. 37-45, 2013
Online since:
March 2013

[2] Neghmouche N. S., Khelef A., Lanez T., RJPBCS (Research Journal of Pharmaceutical, Biological and Chemical) 1(1), ( 2010) 76.

[3] Neghmouche N. S., Khelef A., Lanez T., Rev. Sci. Fond. App. 1(1) (2009) 23-30.

[4] Bard A. J., Faulkner L. R., Electrochemical Methods: Fundamentals and Applications, New York: John Wiley & Sons, (1980).

[5] Cleary J., Bromberg L. E., Magner E., Langmuir 19 (2003) 9162.

[6] Morikita T., Yamamoto T., J. Organomet. Chem. 809 (2001) 637–639.

[7] Mahajan R. K., Kaur N., Bakshi M. S., Physicochem. Eng. Aspects 276 (2006) 221.

[8] Eisele S., Schwarz M., Speiser B., Tittel C., Electrochim. Acta 51 (2006) 5304.

[9] Matsumoto H., Yanagida M., Tanimoto K., Nomura M., Kitagawa Y., Miyazaki Y., Chem. Lett. 29 (2000) 922.

[10] Molina P., Ta´rraga A., Curiel D., Vel M. D., Journal of Organometallic Chemistry 258 (2001) 637.

Show More Hide
Cited By:

[1] J. Robak, B. Burnat, A. Leniart, A. Kisielewska, M. Brycht, S. Skrzypek, "The effect of carbon material on the electroanalytical determination of 4-chloro-3-methylphenol using the sol-gel derived carbon ceramic electrodes", Sensors and Actuators B: Chemical, Vol. 236, p. 318, 2016


[2] G. Manasa, R. Mascarenhas, A. Satpati, O. D'Souza, A. Dhason, "Facile preparation of poly(methylene blue) modified carbon paste electrode for the detection and quantification of catechin", Materials Science and Engineering: C, Vol. 73, p. 552, 2017


[3] B. Daas, S. Ghosh, "Catalytic ability of novel Pt/MCM-41 for fuel cells", Journal of the Iranian Chemical Society, Vol. 15, p. 987, 2018


[4] F. Omar, A. Numan, S. Bashir, N. Duraisamy, R. Vikneswaran, Y. Loo, K. Ramesh, S. Ramesh, "Enhancing rate capability of amorphous nickel phosphate supercapattery electrode via composition with crystalline silver phosphate", Electrochimica Acta, Vol. 273, p. 216, 2018


[5] M. Mukhlis Ramly, F. Saiha Omar, A. Rohaizad, Z. Aspanut, S. Abdul Rahman, B. Tong Goh, "Solid-Phase Diffusion Controlled Growth of Nickel Silicide Nanowires for Supercapacitor Electrode", Applied Surface Science, 2018


[6] J. Lee, J. Lee, Y. Ahn, G. Kang, "Efficient Recovery of Silver from Crystalline Silicon Solar Cells by Controlling the Viscosity of Electrolyte Solvent in an Electrochemical Process", Applied Sciences, Vol. 8, p. 2131, 2018


[7] M. Vafaiee, M. Vossoughi, R. Mohammadpour, P. Sasanpour, "Gold-Plated Electrode with High Scratch Strength for Electrophysiological Recordings", Scientific Reports, Vol. 9, 2019


[8] A. Abdel-Raoof, M. El-Shal, R. Said, M. Abostate, S. Morshedy, M. Emara, "Versatile Sensor Modified with Gold Nanoparticles Carbon Paste Electrode for Anodic Stripping Determination of Brexpiprazole: A Voltammetric Study", Journal of The Electrochemical Society, Vol. 166, p. B948, 2019


[9] M. Iqbal, M. Faisal, S. Ali, S. Farid, A. Afzal, "Co-MOF/polyaniline-based electrode material for high performance asymmetric supercapacitor devices", Electrochimica Acta, p. 136039, 2020


[10] A. Kasprzak, A. Kowalczyk, A. Jagielska, B. Wagner, A. Nowicka, H. Sakurai, "Tris(ferrocenylmethidene)sumanene: synthesis, photophysical properties and applications for efficient caesium cation recognition in water", Dalton Transactions, 2020


[11] A. Kasprzak, P. Guńka, A. Kowalczyk, A. Nowicka, "Synthesis and structural, electrochemical and photophysical studies of triferrocenyl-substituted 1,3,5-triphenylbenzene: a cyan-light emitting molecule showing aggregation-induced enhanced emission", Dalton Transactions, 2020


[12] G. Pace, H. Wang, J. Whitacre, W. Wu, " Comparative study of water‐processable polymeric binders in LiMn 2 O 4 cathode for aqueous electrolyte batteries ", Nano Select, 2021


[13] M. Faisal, S. Ali, S. K.C., M. Iqbal, M. Iqbal, A. Saeed, "Highly porous terpolymer-MOF composite electrode material for high performance supercapattery devices", Journal of Electroanalytical Chemistry, Vol. 893, p. 115321, 2021


[14] S. Venkatesan, J. Jeevahan, M. Purusothaman, S. Venkatesh, M. Rakesh Vimal, "Corrosion and mechanical behavior of plasma nitrated metallic biomaterial surfaces", Materials Today: Proceedings, 2021


[15] C. Erkmen, Y. Demir, S. Kurbanoglu, B. Uslu, "Multi-Purpose Electrochemical Tyrosinase Nanobiosensor based on Poly (3,4 ethylenedioxythiophene) Nanoparticles Decorated Graphene Quantum Dots: Applications to Hormone Drugs Analyses and Inhibition Studies", Sensors and Actuators B: Chemical, p. 130164, 2021


[16] J. Yin, W. Zhang, G. Huang, N. Alhebshi, N. Salah, M. Hedhili, H. Alshareef, "Fly Ash Carbon Anodes for Alkali Metal-Ion Batteries", ACS Applied Materials & Interfaces, 2021


[17] B. Kapan, S. Kurbanoglu, E. Esenturk, S. Soylemez, L. Toppare, "Electrochemical catechol biosensor based on β-cyclodextrin capped gold nanoparticles and inhibition effect of ibuprofen", Process Biochemistry, 2021

Show More Hide