Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > ILCPA Volume 87 > The Planetary Vaporization Event Hypothesis:...
< Back to Volume

The Planetary Vaporization Event Hypothesis: Supercharging Earth’s Geothermal Core, Identifying Side Effects Blast Patterns, and Inferring how to Find Earth-Like Planets or Identifying Super Charged Geothermal Cores and their Byproduct Blast Patterns

Full Text PDF

Abstract:

The supercharged nature of the Earth’s geothermal core can be demonstrated by three thought experiments exhibiting it is tremendously more powerful than any other terrestrial object in the solar system (planet or moon). Identifying a minimum of four byproduct asteroid blast patterns linked to the formation of Earth’s supercharged geothermal core is critical to properly identifying stars that also have these four byproduct asteroid blast patterns. These stars are the most likely to host an Earth-like planet qualified by having a supercharged geothermal core. The Planetary Vaporization-Event (PVE) Hypothesis provides a basis for correlation between the supercharged nature of Earth’s geothermal core and at least 14 listed side effects: (1) the asteroid-wide/planet-scale homogenization and lack thereof of 182W ε for Earth, the Moon, Mars and meteors, (2) the primary and secondary shifting of Earth’s tectonic plates, (3) the solar system wide displacement of Earth’s wayward moons (including Ceres, Pluto, Charon and Orcus) outgassing identical samples of ammoniated phyllosilicates, (4) the formation of asteroids at 100+ times the expected density of a nebular cloud vs. pre-solar grains formation density at the expected density of a nebular cloud, (5) three distinct formation timestamps for all known asteroids within a 5 million year window 4.55+ billion years ago, (6) the estimated formation temperature of CAI at 0.86 billion Kelvin and (7) the remaining chondritic meteorite matrix flash vaporizing at 1,200–1,900 °C, (8) followed by rapid freezing near 0 K, (9) the development of exactly 2 asteroid belts and a swarm of non-moon satellites, (10) particulate size distinction between the 2 asteroid belts of small/inner, large/outer, (11) the proximity of the Trojan Asteroid Groups to the Main Asteroid Belt, (12) observation of a past or present LHB, (13) the development of annual meteor showers for Earth proximal to apogee and/or perigee, (14) the Sun being the most-likely object struck by an asteroid in the inner solar system. Through better understanding of the relevant data at hand and reclassification of the byproducts of supercharging the core of a planet, at least 5 new insights can be inferred and are listed as: (1) the original mass, (2) distance and (3) speed of Earth Mark One, (4) the original order of Earth’s multi-moon formation and (5) the high probability of finding detectable signs of life on a planet orbiting the stars Epsilon Eridani and Eta Corvi. There are at least 6 popular hypothesis that the PVE Hypothesis is in conflict with, listed they are: (1) a giant impact forming the Moon, (2) asteroids being the building blocks of the solar system, (3) the Main Asteroid Belt being the result of a planet that never formed, (4) the LHB being a part of the accretion disk process, (5) the heat in Earth’s core coming primarily from the decay of radioactive elements, (6) the Oort Cloud being the source of ice comets.

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 87)
Pages:
1-21
Citation:
A. R. Hurst, "The Planetary Vaporization Event Hypothesis: Supercharging Earth’s Geothermal Core, Identifying Side Effects Blast Patterns, and Inferring how to Find Earth-Like Planets or Identifying Super Charged Geothermal Cores and their Byproduct Blast Patterns", International Letters of Chemistry, Physics and Astronomy, Vol. 87, pp. 1-21, 2021
Online since:
October 2021
Authors:
Export:
Distribution:
References:

[1] Alexander, C. M. O'D., Grossman, J. N., Ebel, D. S. et al., 2008. The formation conditions of chondrules and chondrites. Science 320 (5883) 1617–1619.

DOI: https://doi.org/10.1126/science.1156561

[2] Alley, C. O., Bender, P. L, Chang, R. F. et al., 1969. Laser ranging retroreflector. In: Apollo 11: Preliminary Science Report, NASA SP-214. NASA, Washington, DC, p.163–182.

[3] Amelin, Y., Krot, A. N., Hutcheon, I. D. et al., 2002. Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science 297 (5587) 1678–168.

DOI: https://doi.org/10.1126/science.1073950

[4] Amelin, Y., Krot, A., 2007. Pb isotopic age of the Allende chondrules. Meteoritics & Planetary Science 42 (7–8) 1321–1335.

DOI: https://doi.org/10.1111/j.1945-5100.2007.tb00577.x

[5] Anders, E., 1964. Origin, age and composition of meteorites. Space Science Reviews 3 (5–6) 583–714.

[6] Avice, G., Meier, M. M. M., Marty, B. et al., 2015. A comprehensive study of noble gases and nitrogen in Hypatia, a diamond-rich pebble from SW Egypt. Earth and Planetary Science FFLetters 432C (October) 243–253.

DOI: https://doi.org/10.1016/j.epsl.2015.10.013

[7] Airapetian, V.S., Jackman, C.H., Mlynczak, M., 2017. Atmospheric Beacons of Life from Exoplanets Around G and K Stars. Sci Rep 7, 14141. https://doi.org/10.1038/s41598-017- 14192-4 arXiv:astro-ph/0004117v1 (https://arxiv.org/abs/astro-ph/0004117).

DOI: https://doi.org/10.1038/s41598-017-14192-4

[8] Backman, D., Marengo, M., Stapelfeldt, K. et al., 2008. Epsilon Eridani's planetary debris disk: Structure and dynamics based on Spitzer and CSO observations. The Astrophysical Journal 690 (2) 1522–1538.

DOI: https://doi.org/10.1088/0004-637x/690/2/1522

[9] Belyanin, G. A., Kramers, J. D., Andreoli, M. A. G. et al., 2017. Petrography of the carbonaceous, diamond-bearing stone 'Hypatia, from southwest Egypt: A contribution to the debate on its origin. Geochimica et Cosmochimica Acta 223 (February 15) 462– 492.

DOI: https://doi.org/10.1016/j.gca.2017.12.020

[10] Bouvier, A., Wadhwa, B., 2010. The age of the solar system redefined by the oldest Pb–Pb age of a meteoritic inclusion. Nature Geoscience 3 637–641.

DOI: https://doi.org/10.1038/ngeo941

[11] Braga-Ribas,F., Sicardy, B., Ortiz, J., et al., 2013. The size, shape, albedo, density, and atmospheric limit of transneptunian object (50000) Quaoar from multi-chord stellar occultations. The Astrophysical Journal 773 (1) 26.

DOI: https://doi.org/10.1088/0004-637x/773/1/26

[12] Brasser, R., Mojzsis, S. J., Werner, S. C. et al., 2016. Late veneer and late accretion to the terrestrial planets. Earth and Planetary Science Letters 455 (December 1) 85–93. doi.org/10.1016/j.epsl.2016.09.013.

DOI: https://doi.org/10.1016/j.epsl.2016.09.013

[13] Brown, M. E., 2013a. The density of mid-sized Kuiper belt object 2002 UX25 and the formation of the dwarf planets. Astrophysics arXiv:1311.0553 [astro-ph.EP].

DOI: https://doi.org/10.1088/2041-8205/778/2/l34

[14] Brown, M. E., 2013b. On the size, shape, and density of dwarf planet Makemake. Retrieved from https://arxiv.org/pdf/1304.1041v1.pdf.

[15] Brown, M. E., Schaller, E. L., 2007. The mass of dwarf planet Eris. Science 316, 1585.

DOI: https://doi.org/10.1126/science.1139415

[16] Canup, R., Asphaug, E., 2001. Origin of the Moon in a giant impact near the end of the Earth's formation. Nature 412 (6848) 708–712.

DOI: https://doi.org/10.1038/35089010

[17] Clague, D. A., Dalrymple, G. B., 1987. The Hawaiian-Emperor volcanic chain. Part 1. Geologic evolution. In R. W. Decker, T. L. Wright, P. H. Stauffer (Eds.), Volcanism in Hawaii: Papers to Commemorate the 75th Anniversary of the Founding of the Hawaiian Volcano Observatory. United States Geological Survey Professional Paper 1350, p.5–100.

DOI: https://doi.org/10.3133/pp1350

[18] Chang, Heon-Young. (2010). Titius-Bode's Relation and Distribution of Exoplanets. Journal of Astronomy and Space Sciences. 27. 1-10. 10.5140/JASS.2010.27.1.001.

DOI: https://doi.org/10.5140/jass.2010.27.1.001

[19] Connelly, J. N., Bizzarro, M., Krot, A. N. et al., 2012. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338 (6107) 651–655.

DOI: https://doi.org/10.1126/science.1226919

[20] Currie, D. G., Dell'Agnello, S., Delle Monache, G. O. et al., 2013. A lunar laser ranging retroreflector array for the 21st century. Nuclear Physics B Proceedings Supplements 243–244 (October–November) 218–228.

DOI: https://doi.org/10.1016/j.nuclphysbps.2013.09.007

[21] Davies, J. H., Davies, D. R., 2010. Earth's surface heat flux. Solid Earth 1 (1) 5–24. doi:org/10.5194/se-1-5-(2010).

DOI: https://doi.org/10.5194/se-1-5-2010

[22] Day, J. M. D., R. J. Walker, 2015. Highly siderophile element depletion in the Moon. Earth and Planetary Science Letters 423, 114–124.

DOI: https://doi.org/10.1016/j.epsl.2015.05.001

[23] Domeier, M., Torsvik, T. H., 2014. Plate tectonics in the late Paleozoic. Geoscience Frontiers 5 (3) 303–350. doi:org/10.1016/j.gsf.2014.01.002.

[24] Dones, L., Weissman, P. R., Levison, H. F. et al., 2004. Oort Cloud formation and dynamics. In:.

[25] D. Johnstone, F. C. Adams, D. N. C. Lin et al. (Eds.), Star Formation in the Interstellar Medium: In Honor of David Hollenbach, Chris McKee and Frank Shu, ASP Conference Proceedings, vol. 323. Astronomical Society of the Pacific, San Francisco, 371.

[26] G. Duchene, P. Arriaga, M. Wyatt, G. Kennedy, B. Sibthorpe, C. Lisse, W. Holland, J. Wisniewski, M. Clampin, P. Kalas, C. Pinte, D. Wilner, M. Booth, J. Horner, B. Matthews, J. Greaves. 2014. Spatially resolved imaging of the two-component eta Crv debris disk with Herschel. The Astrophysical Journal 784 (2).Dye, S. T., 2012. Geoneutrinos and the radioactive power of the Earth. Reviews of Geophysics 50 (3) –19.

DOI: https://doi.org/10.1088/0004-637x/784/2/148

[27] Fernandez, J. A., 1980. On the existence of a comet belt beyond Neptune. Monthly Notices of the Royal Astronomical Society 192 (3) 481–491.

DOI: https://doi.org/10.1093/mnras/192.3.481

[28] Fornasier, S., Lellouch, E., Müller, T., et al., 2013. TNOs are cool: A survey of the trans- Neptunian region. VIII. Combined Herschel PACS and SPIRE observations of 9 bright targets at 70--500 micron. Astronomy and Astrophysics 555 A15 arXiv:1305.0449 [astro- ph.EP].

DOI: https://doi.org/10.1051/0004-6361/201321329

[29] Gando, A., Gando, Y., Ichimura, K. et al. Partial radiogenic heat model for Earth revealed by geoneutrino measurements. Nature Geosci 4, 647–651 (2011). https://doi.org/10.1038/ngeo1205.

DOI: https://doi.org/10.1038/ngeo1205

[30] Gomes, R., Levison, H. F., Tsiganis, K. et al., 2005. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435 (May) 466–469.

DOI: https://doi.org/10.1038/nature03676

[31] Grady, M. M., 2000. Catalogue of meteorites 5th ed. Cambridge, UK: Cambridge University Press.

[32] Halliday, A. N., 2000. Hf-W chronometry and inner solar system accretion rates. Space Science Reviews 92 (1) 355–370.

DOI: https://doi.org/10.1007/978-94-011-4146-8_23

[33] Herschel, W., 1807. Observations on the nature of the new celestial body discovered by Dr.

[34] Olbers, and of the comet which was expected to appear last January in its return from the Sun. The Academy, London, p.260–266.

DOI: https://doi.org/10.1098/rstl.1807.0014

[35] Hess, W. N., 1968. The radiation belt and magnetosphere. Blaisdell, Waltham, MA. Hewins, R. H,. Radomsky, P. M. 1990. Temperature conditions for chondrule formation.

[36] Meteoritics 25 (4) 309–318.

[37] Ignasi, R., 2010. The Sun and stars as the primary energy input in planetary atmospheres. In: Solar and Stellar Variability: Impact on Earth and Planets, Proceedings of the International Astronomical Union 5 (264) 3–18.

[38] Isherwood, R. J., Jozwiak, L. M., Jansen, J. C. et al., 2012. The volcanic history of Olympus Mons from paleo-topography and flexural modeling. Department of Geophysics and Center for Space Resources, Colorado School of Mines, Golden, CO.

DOI: https://doi.org/10.1016/j.epsl.2012.12.020

[39] Karner, G. D., Watts, A. B., 1983. Gravity anomalies and flexure of the lithosphere at mountain ranges. Journal of Geophysical Research 88 (B12) 10449–10477.

DOI: https://doi.org/10.1029/jb088ib12p10449

[40] Keiko, N., Messenger, S., Keller, L. P. et al., 2006. Organic globules in the Tagish Lake meteorite: Remnants of the proto-solar disk. Science 314 (5804) 1439–1442.

DOI: https://doi.org/10.1126/science.1132175

[41] Kirkwood, D., 1867. Meteoric astronomy: A treatise on shooting-stars, fireballs, and aerolites. J.B. Lippincott, Philadelphia.

[42] Kiss, C., Marton, G., Parker, A. et al., 2018. The mass and density of the dwarf planet 2007 OR10. 50th annual meeting of the AAS Division of Planetary Sciences. abstract 311.02. Retrieved 21 September 2018. Retrieved from https://aas.org/meetings/dps50.

[43] Krot, A. N, Amelin, Y., Bland, P. et al., 2009. Origin and chronology of chondritic components: A review. Geochimica et Cosmochimica Acta 73 (17) 4963–4997.

DOI: https://doi.org/10.1016/j.gca.2008.09.039

[44] Kruijer, T. S., Kleine, T., Fischer-Gödde, M. et al., 2015. Lunar tungsten isotopic evidence for the late veneer. Nature 520 (April 23) 534–537.

DOI: https://doi.org/10.1038/nature14360

[45] Lacerda, P., Jewitt, D., 2016. Densities of solar system objects from their rotational lightcurves. Astrophysics arXiv:astro-ph/0612237.

[46] Lakdawalla, E., 2015, November 12. DPA 2015: First reconnaissance of Ceres by Dawn [blog post]. The Planetary Society. Retrieved from http://www.planetary.org/blogs/emily- lakdawalla/2015/dps15-1112-ceres.html.

[47] Lisse, C. M., Wyatt, M. C., Chen. C. H. et al., 2012. Spitzer evidence for a late-heavy bombardment and the formation of ureilites in η Corvi at ~1 gry. The Astrophysical Journal 747 (93) 25.

DOI: https://doi.org/10.1088/0004-637x/747/2/93

[48] MacKenzie, D., 2003. The big splat or how our moon came to be. John Wiley & Sons, Hoboken, NJ.

DOI: https://doi.org/10.1063/1.1768675

[49] MacPherson, G. J., Simon, S. B., Davis, A. M. et al., 2005. Calcium-aluminum-rich inclusions: Major unanswered questions. In: A. N. Krot, E. R. D. Scott, and B. Reipurth (Eds.), Chondrites and the Protoplanetary Disk, Astronomical Society of the Pacific Conference Series, vol. 341. Astronomical Society of the Pacific, San Francisco, 225–250.

[50] Magill, F., 1990. Magill's survey of science: Earth science series. Vol. 2. Salem Press, Hackensack, NJ.b.

[51] Minorplanetcenter.net/iau/lists/Trojans.html.

[52] National Research Council, 2011. The primitive bodies: Building blocks of the solar system. In: cVision and voyages for planetary science in the decade 2013–2022. The National Academies Press, Washington, DC 87–110. doi.org/10.17226/13117.

[53] O'Leary, M., 2008. Anaxagoras and the origin of panspermia theory. iUniverse , Bloomington, IN.

[54] Ott, U., 2002. Isotopes of colatiles in pre-solar grains. Space Science Reviews 106 (1–4) 33–48,.

[55] Pirani, S., Johansen,A. and Mustill, A. J., 2019. On the Inclinations of the Jupiter Trojans.

[56] Astronomy & Astrophysics 631 (2019): A89. Crossref. Web.

[57] Potemine,I. Y., 2010. Transit of Luyten 726-8 within 1 ly from Epsilon Eridani. Eprint arXiv:1004.1557.

[58] Quitté, G., Halliday, A. N., Meyer, B. S. et al., 2007. Correlated iron 60, nickel 62, and zirconium 96 in refractory inclusions and the origin of the solar system. The Astrophysical Journal 655 (1) 678–684,.

DOI: https://doi.org/10.1086/509771

[59] Rambaux, N., Baguet, D., Chambat, F. et al., 2017. Equilibrium shapes of sarge trans-Neptunian objects. The Astrophysical journal letters, Bristol : IOP Publishing, 850 (1), L9.

DOI: https://doi.org/10.3847/2041-8213/aa95bd

[60] Rayman, M., 2015. Now appearing at a dwarf planet near you: NASA's Dawn mission to the Asteroid Belt. Silicon Valley Astronomy Lectures. Foothill College, Los Altos, CA.

[61] Sanctis, M. C. De, Ammannito, E., Raponi, A. et al., 2015. Ammoniated phyllosilicates with a likely outer solar system origin on (1) Ceres. Nature 528 (December 10) 241–244.

DOI: https://doi.org/10.1038/nature16172

[62] Schmidt, L. J., 2004. Sensing remote volcanoes. National Aeronautics and Space Administration. https://earthdata.nasa.gov/user-resources/sensing-our-planet/sensing-remote-volcanoes.

[63] Schrader, D. L., Fu, R. R., Desch S. J., 2016. Evaluating chondrule formation models and the protoplanetary disk background temperature with low-temperature, sub-silicate solidus chondrule cooling rates, LPI Contribution No. 1903. 47th Lunar and Planetary Science Conference, March 21–25, 2016, The Woodlands, TX, p.1180.

[64] Stern, S. A., Grundy, W., McKinnon, W. B., et al., 2017. The Pluto system after New Horizons. Annual Reviews of Astronomy ans Astrophysics 2018 arXiv:1712.05669 [astro-ph.EP].

DOI: https://doi.org/10.1146/annurev-astro-081817-051935

[65] Touboul, M., Puchtel, I. S., Walker, R. J., 2015. Tungsten isotopic evidence for disproportionate late accretion to the Earth and Moon. Nature 520 (April) 530-533,.

DOI: https://doi.org/10.1038/nature14355

[66] Von Humboldt, A., 1850. Cosmos: A sketch of a physical description of the universe. 1. Harper & Brothers, New York, 44.

[67] Walker, R. J., 2009. Highly siderophile elements in the Earth, Moon and Mars: Update and implications for planetary accretion and differentiation. Chemie der Erde 69, 101–125.

DOI: https://doi.org/10.1016/j.chemer.2008.10.001

[68] Wegener, A., 1912. Die Herausbildung der Grossformen der Erdrinde (Kontinente und Ozeane), auf geophysikalischer Grundlage. In Petermanns Geographische Mitteilungen 50 (1) 185–195, 253–256, 305–309.

[69] Weijermars, R., 1989. Global tectonics since the breakup of Pangea 180 million years ago: Evolution maps and lithospheric budget. Earth Science Reviews 26 (1–3) 113–162.

DOI: https://doi.org/10.1016/0012-8252(89)90020-2

[70] Weizsäcker, C. F., 1948. The rotation of cosmic gas masses. Zeitschrift für Naturforschung A 3 (8–11) 524–539.

[71] Wieczorek M.A., 2006. The constitution and structure of the lunar interior. Reviews in Mineralogy and Geochemistry 60 (1) 221–364.

DOI: https://doi.org/10.2138/rmg.2006.60.3

[72] Williams, D. A., Keszthelyi, L. P., Crown, D. A. et al., 2011. Geologic map of Io: U.S. Geological Survey Scientific Investigations Map 3168, 25. Available at https://pubs.usgs.gov/sim/3168/.

DOI: https://doi.org/10.3133/sim3168

[73] Windley, B. F., 1970. Anorthosites in the early crust of the Earth and on the Moon. Nature 226 (5243) 333–335.

DOI: https://doi.org/10.1038/226333b0

[74] Wood, J. A., 1963a. Nature 194, 127.

[75] Wood, J. A., 1963b, unpublished work.

[76] Yoneda, S., Grossman, L., 1995. Condensation of CaO-MgO-AI203-SiO2 liquids from cosmic gases. Geochimica et Cosmochimica Acta 59 (16) 3413–3444.

DOI: https://doi.org/10.1016/0016-7037(95)00214-k

[77] Youngl, E. D., Warren, P. H., Rubie, D. C. et al., 2016. Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact. Science 351 (6272) 493–496.

DOI: https://doi.org/10.1126/science.aad0525
Show More Hide
Cited By:
This article has no citations.