This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] World Health Organisation, (2013) World Malaria Report.
[2] P.K. Chiang et al., Malaria: therapy, genes and vaccines, Curr. Mol. Med. 6 (2006) 309-326.
[3] M.J. Gardner et al., Genome sequence of the human malaria parasite Plasmodium falciparum, Nature 419 (2002) 498-511.
[4] L. Florens et al., A proteomic view of the Plasmodium falciparum life cycle, Nature 419 (2002) 520-526.
[5] T. Lemcke, I.T. Christensen, F.S. Jorgensen, Towards an understanding of drug resistance in malaria: three-dimensional structure of Plasmodium falciparum dihydrofolate reductase by homology building, Bioorg. med. chem. 7 (1999) 1003-1011.
DOI: https://doi.org/10.1016/s0968-0896(99)00018-8[6] G. Rastelli et al., Interaction of pyrimethamine, cycloguanil, WR99210 and their analogues with Plasmodium falciparum dihydrofolate reductase: structural basis of antifolate resistance, Bioorg. med. chem. 8 (2000) 1117-1128.
DOI: https://doi.org/10.1016/s0968-0896(00)00022-5[7] R.T. Delfino, O.A. Santos, J.D. Figueroa-Villar, Molecular modeling of wild-type and antifolate resistant mutant Plasmodium falciparum DHFR, Biophys. Chem. 98 (2002) 287-300.
DOI: https://doi.org/10.1016/s0301-4622(02)00077-7[8] D.R. Knighton et al., Structure of and kinetic channelling in bifunctional dihydrofolate reductase–thymidylate synthase, Nat. Struct. Biol. 1 (1994) 186-194.
DOI: https://doi.org/10.1038/nsb0394-186[9] A. Gregson, C.V. Plowe, Mechanisms of resistance of malaria parasites to antifolates, Pharmacol. Rev. 57 (2005) 117-145.
DOI: https://doi.org/10.1124/pr.57.1.4[10] I.M. Kompis, K. Islam, R.L. Then, DNA and RNA synthesis: antifolates, Chem. Rev. 105 (2005) 593-620.
[11] D.J. Christian et al., Microwave Assisted Synthesis and in Vitro Anti-malarial Screening of Novel Pyrimidine Derivatives, World J. Pharma. Pharma Sci. 3 (2014) 1955-1971.
[12] J.M. Beierlein, N.G. Karri, A.C. Anderson, Targeted Mutations of Bacillus anthracis Dihydrofolate Reductase Condense Complex Structure− Activity Relationships, J. Med. Chem. 53 (2010) 7327-7336.
DOI: https://doi.org/10.1021/jm100727t[13] A.T.R. Laurie, R.M. Jackson, Q-SiteFinder: an energy-based method for the prediction of protein–ligand binding sites, Bioinformatic 21 (2005) 1908-1916.
DOI: https://doi.org/10.1093/bioinformatics/bti315[14] L.K. Wolf, Quidditch For Chemists, ChemEng News Arch 87 (2009) 48-48.
[15] G.N. Ramachandran, C. Ramakrishnan, V. Sasisekharan, Conformation of polypeptides and proteins, J. Mol. Biol. 7 (1963) 95-99.
[16] P. Benkert, S.C.E. Tosatto, D. Schomburg, QMEAN: A comprehensive scoring function for model quality assessment, Proteins Struct. Funct. Bioinf. 71 (2008) 261-277.
DOI: https://doi.org/10.1002/prot.21715[17] S.F. Altschul et al., Basic local alignment search tool, J. Mol. Biol. 215 (1990) 403-410.
[18] http://www.molinspiration.com.
[19] I.A. Khan et al., Quantitative structure–activity relationship (QSAR) of aryl alkenyl amides/imines for bacterial efflux pump inhibitors, Eur. J. Med. Chem. 44 (2009) 229-238.
DOI: https://doi.org/10.1016/j.ejmech.2008.02.015[20] S. Peterangelo, P. Seybold, Synergistic interactions among QSAR descriptors, Int. J. Quantum Chem. 96 (2004) 1-9.
DOI: https://doi.org/10.1002/qua.10591[21] S. Kulkarni, V.M. Kulkarni, Three-Dimensional Quantitative Structure-Activity Relationship of Interleukin 1-β Converting Enzyme Inhibitors: A Comparative Molecular Field Analysis Study, J. Med. Chem. 42 (1999) 373-380.
DOI: https://doi.org/10.1021/jm9708442[22] P. Roy, K. Roy, On some aspects of variable selection for partial least squares regression models, QSAR Comb. Sci. 27 (2007) 302-313.
DOI: https://doi.org/10.1002/qsar.200710043