This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] H. Li et al., Electrochemistry of a novel monoruthenated porphyrin and its interaction with DNA, J. Electroanalytical Chem. 600(2) (2007) 243–250.
[2] Y. Zhou, Y. Li, Studies of interaction between poly(allylamine hydrochloride) and double helix DNA by spectral methods, Biophysical Chemistry. 107(3) (2004) 273–281.
DOI: https://doi.org/10.1016/j.bpc.2003.09.009[3] Y. Ni, D. Lin, S. Kokot, Synchronous fluorescence and UV-vis spectrometric study of the competitive interaction of chlorpromazine hydrochloride and Neutral Redwith DNA using chemometrics approaches, Talanta. 65(5) (2005) 1295–1302.
DOI: https://doi.org/10.1016/j.talanta.2004.09.008[4] C. Li et al., A new chemically amplified electrochemical system for DNA detection in solution, Electrochemistry Communications. 7(1) (2005) 23–28.
[5] D.E. Draper, Protein-RNA recognition, Annual Rev. Biochem. 64(1) (1995) 593–620.
[6] S. Cusack, Aminoacyl-tRNA synthetases, Current Opinion in Structural Biology. 7(6) (1997) 881–889.
DOI: https://doi.org/10.1016/s0959-440x(97)80161-3[7] G. Varani, K. Nagai, RNA recognition by RNP proteins during RNA processing, Annual Review of Biophysics and Biomolecular Structure. 27(1) (1998) 407–445.
DOI: https://doi.org/10.1146/annurev.biophys.27.1.407[8] D.J. Ecker, R.H. Griffey, RNA as a small-molecule drug target: doubling the value of genomics, Drug Discovery Today. 4(9) (1999) 420–429.
DOI: https://doi.org/10.1016/s1359-6446(99)01389-6[9] T. Hermann, E. Westhof, RNA as a drug target: chemical, modelling and evolutionary tools, Current Opinion in Biotechnology. 9(1) (1998) 66–73.
DOI: https://doi.org/10.1016/s0958-1669(98)80086-4[10] A. Varshney et al., Ligand binding strategies of human serum albumin: how can the cargo be utilized, Chirality. 22(1) (2010) 77–87.
DOI: https://doi.org/10.1002/chir.20709[11] N. Zaidi et al., Biophysical insight into furosemide binding to human serum albumin: a study to unveil its impaired albumin binding in uremia, J. Physical Chem. B. 117(9) (2013) 2595–2604.
DOI: https://doi.org/10.1021/jp3069877[12] N. Zaidi et al., A comprehensive insight into binding of hippuric acid to human serum albumin: a study to uncover its impaired elimination through hemodialysis, PLoS One. 8 (2013) 71422.
DOI: https://doi.org/10.1371/journal.pone.0071422[13] S. Sugio et al., Crystal structure of human serum albumin at 2.5 A resolution, Protein Engineering. 12(6) (1999) 439–446.
[14] P. Vorobey et al., Influence of human serum albumin on photodegradation of folic acid in solution, J. Photochem. and Photobiol. 82(3) (2006) 817–822.
DOI: https://doi.org/10.1562/2005-11-23-ra-739[15] N.V. Bhagvan, C.E. Ha, Novel insight into the pleiotropic effects of human serum albumin in health and disease, Biochemica et Biophysica Acta, General subjects. 1830(12) (2013) 5486–5493.
DOI: https://doi.org/10.1016/j.bbagen.2013.04.012[16] M.C. Jimenez, M.A. Miranda, I. Vaya, Triplet excited states as chiral reporters for the binding of drugs to transport proteins, J. Am. Chem. Soc. 127(29) (2005) 10134–10135.
DOI: https://doi.org/10.1021/ja0514489[17] R. Huey et al., A semiempirical free energy force field with charge-based desolvation, J. Computational Chem. 28(6) (2007) 1145–1152.
DOI: https://doi.org/10.1002/jcc.20634[18] G.M. Morris, M. Lim-Wilby, Molecular docking, in: A. Kukol (Ed.), Molecular Modeling of Proteins, Humana Press, Totowa, New Jersey, 2008, p.365–382.
[19] T.A. Halgren, Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94, J. Computational Chem. 17 (1998) 490–519.
DOI: https://doi.org/10.1002/(sici)1096-987x(199604)17:5/6<490::aid-jcc1>3.0.co;2-p[20] N .Rajendiran, J. Thulasidhasan, Interaction of sulfanilamide and sulfamethoxazole with bovine serum albumin and adenine: Spectroscopic and molecular docking investigations, Spectrochimica Acta. 144 (2015) 183–191.
DOI: https://doi.org/10.1016/j.saa.2015.01.127[21] N. Rajendiran, J. Thulasidhasan, Study of the binding of thiazolyazoresorcinol and thiazolyazocresol dyes with BSA and adenine by spectral, electrochemical and molecular docking methods, Canadian Chemical Transaction. 3(3) (2015) 291–307.
DOI: https://doi.org/10.13179/canchemtrans.2015.03.02.0209[22] N. Rajendiran, J. Thulasidhasan, Binding of sulfamerazine and sulfamethazine to bovine serum albumin and nitrogen purine base adenine: a comparative study, International Letters of Chemistry, Physics and Astronomy. 59 (2015) 170–187.
DOI: https://doi.org/10.18052/www.scipress.com/ilcpa.59.170[23] N. Rajendiran, J. Thulasidhasan, Spectral, electrochemical and molecular docking methods to get an understanding of supramolecular chemistry of sulfa drugs to biomolecules, J. Mol. Liq. 212 (2015) 857–864.
DOI: https://doi.org/10.1016/j.molliq.2015.10.036[24] N. Rajendiran, J. Thulasidhasan, Spectral, electrochemical and molecular docking studies on the interaction of dothiepin and doxepin with BSA and DNA base, Luminescence, The Journal of Biological and Chemical Luminescence. 31(8) (2016) 1438–1447.
DOI: https://doi.org/10.1002/bio.3126[25] N. Rajendiran, J. Thulasidhasan, Effects of interaction between Non-Steroidal Anti- Inflammatory drugs with BSA and DNA base: spectral, electrochemical and molecular docking methods, J. Indian Chem. Soc. 94(1) (2017) 83–93.
[26] H.A. Benesi, J.H. Hildebrand, A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons, J. Am. Chem. Soc. 71(8) (1949) 2703–2707.
DOI: https://doi.org/10.1021/ja01176a030[27] L.Z. Zhang, G.Q. Tang, The binding properties of photosensitizer methylene blue to herring sperm DNA: a spectroscopic study, J. Photochem. Photobiol. B: Biology. 74(2) (2004) 119–125.
[28] E.C. Long, J.K. Barton, On demonstrating DNA intercalation, Accounts of Chemical Research. 23(9) (1990) 271–273.
[29] J.J. Stephanos, Drug-protein interactions: two-site binding of heterocyclic ligands to a monomeric hemoglobin, J. Inorganic Biochem. 62(3) (1996) 155–169.
DOI: https://doi.org/10.1016/0162-0134(95)00144-1[30] R. Marty et al., Structural analysis of DNA complexation with cationic lipids, Nucleic Acids Res. 37(3) (2009) 849–857.
[31] A. Mallick, B. Haldar, N. Chattopadhyay, Spectroscopic investigation on the interaction of ICT probe 3-Acetyl-4-oxo-6,7-dihydro-12H Indolo-[2,3-a] quinolizine with serum albumins, The J. Phys. Chem. B. 109(30) (2005) 14683–14690.
DOI: https://doi.org/10.1021/jp051367z[32] A. Barik, K.I. Priyadarsini, H.Mohan, Photophysical studies on binding of curcumin to bovine serum albumin, Photochem. and Photobiol. 77(6) (2003) 597–603.
DOI: https://doi.org/10.1562/0031-8655(2003)077<0597:psoboc>2.0.co;2[33] Q. Feng, N.Q. Li, Y.Y. Jiang, Electrochemical studies of porphyrin interacting with DNA and determination of DNA, Analytica Chimica Acta. 344(1-2) (1997) 97–104.
DOI: https://doi.org/10.1016/s0003-2670(97)00008-1[34] C.J. Camacho, S. Vajda, Protein docking along smooth association pathways, Proceedings of the National Academy of Sciences of the United States of America. 98(19) (2011) 1036–1041.
[1] P. Ipte, S. Sahoo, A. Satpati, "Spectro-electrochemistry of ciprofloxacin and probing its interaction with bovine serum albumin", Bioelectrochemistry, p. 107330, 2019
DOI: https://doi.org/10.1016/j.bioelechem.2019.107330[2] P. Ipte, S. Kumar, A. Satpati, "Electrochemical synthesis of carbon nano spheres and its application for detection of ciprofloxacin", Journal of Environmental Science and Health, Part A, p. 1, 2019
DOI: https://doi.org/10.1080/10934529.2019.1674591[3] P. Ipte, A. Satpati, "Probing the interaction of ciprofloxacin and E. coli by electrochemistry, spectroscopy and atomic force microscopy", Biophysical Chemistry, p. 106456, 2020
DOI: https://doi.org/10.1016/j.bpc.2020.106456[4] T. Khalil, A. El‐Dissouky, D. Al‐Wahaib, N. Abrar, D. El‐Sayed, "Synthesis, characterization, antimicrobial activity, 3D‐QSAR, DFT, and molecular docking of some ciprofloxacin derivatives and their copper(II) complexes", Applied Organometallic Chemistry, 2020
DOI: https://doi.org/10.1002/aoc.5998[5] P. Ipte, A. Sharma, H. Pal, A. Satpati, "Probing the interaction of ciprofloxacin with dsDNA: Electrochemical, spectro-electrochemical and AFM investigation", Journal of Electroanalytical Chemistry, Vol. 885, p. 115098, 2021
DOI: https://doi.org/10.1016/j.jelechem.2021.115098[6] S. Badawy, Y. Yang, Y. Liu, M. Marawan, I. Ares, M. Martinez, M. Martínez-Larrañaga, X. Wang, A. Anadón, M. Martínez, "Toxicity induced by ciprofloxacin and enrofloxacin: oxidative stress and metabolism", Critical Reviews in Toxicology, Vol. 51, p. 754, 2021
DOI: https://doi.org/10.1080/10408444.2021.2024496