This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] S. Rajeshwari et al., Carbon from Cassava peel, an agricultural waste, as an adsorbent in the removal of dyes and metal ions from aqueous solution, Bioresource Technol. 80(3) (2001) 233-235.
DOI: https://doi.org/10.1016/s0960-8524(00)00179-6[2] C.K. Lee, K.S. Low, P. Gan, Removal of some organic dyes by acid-treated spent bleaching earth, Environ Technol. 20 (1999) 99-104.
DOI: https://doi.org/10.1080/09593332008616798[3] S. Pappic, N. Koprivanac, A. Metes, Optimizing polymer induced flocculation process to remove the active dyes from wastewater, Environ Technol, 21 (2000) 97-105.
DOI: https://doi.org/10.1080/09593332108618143[4] V.K. Garg et al., Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian Rosewood sawdust: a timber industry waste, Dyes and Pigments. 63(3) (2004) 243-250.
DOI: https://doi.org/10.1016/j.dyepig.2004.03.005[5] Y. Zaker, M.A. Hossain, T.S.A. Islam, Effect of various factors on the adsorption of methylene blue on silt fractionated from Bijoypur Soil, Bangladesh, Int. Res. J. Environment Sci. 2(6) (2013) 1-7.
[6] Y. Zaker et al., Characterization of sand fractionated from Bijoypur Soil, Bangladesh and its application as an adsorbent, Res. J. Chem. Sci. 3(11) (2013) 90-94.
[7] Y. Zaker et al., Physico-chemical characterization of clay fractionated from Bijoypur soil, Bangladesh J. Agri. and Environ. 9(2) (2013) 14-20.
[8] S. Banerjee et al., Adsorption studies of methylene blue onto activated saw dust: kinetics, equilibrium and thermodynamic studies, Env. Prog. Sust. Energy. 33(3) (2014) 790-799.
DOI: https://doi.org/10.1002/ep.11840[9] S. Idris et al., Sawdust as an adsorbent for the removal of methylene blue from aqueous solution: adsorption and equilibrium studies, J. Chem. Eng. 1(1) (2012) 11-21.
[10] M. A. Mohammed, A. Shitu, A. Ibrahim, Removal of methylene blue using low cost adsorbent: a review, Res. J. Chem. Sci. 4(1) (2004) 91-102.
[11] S. De Gisi et al., Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review, Sustain. Materials. Technol. 9 (2016) 10–40.
DOI: https://doi.org/10.1016/j.susmat.2016.06.002[12] L. Gong, W. Sun, L. Kong, Adsorption of methylene blue by NaOH-modified dead leaves of plane trees, Computational Water, Energy, and Environmental Engineering. 2(02) (2013) 13-19.
DOI: https://doi.org/10.4236/cweee.2013.22b003[13] I. H. Dakhil, Adsorption of Methylene Blue dye from wastewater by spent tea leaves, J. Kerbala Univ. 11(3) (2013) 5-14.
[14] M.A. Hossain, M.Q. Ehsan, T.S.A. Islam, Sorption of Cr(VI) on used tea leaves, Dhaka Univ. J. Sci. 48(1) (2000) 7-12.
[15] Y. Anjanaeyulu, V. Himabindu, Application of mixed adsorbent (oxygenated coconut shell, activated carbon– OCSAC-flyash-china clay) for the removal of basic dyes from Industrial effluents, J. Envt. Pollut. 8(1) (2001) 117-127.
[16] G. Mckay, M. Elgundi, M.M. Nassar, External mass transport processes during the adsorption of dyes onto the bagasse pith, Water Res. 22(12) (1988) 1527-1533.
DOI: https://doi.org/10.1016/0043-1354(88)90165-0[17] C. Namasivayam, K. Kadirvelu, Coir pith as an agricultural waste byproduct for the treatment of dyeing wastewater, Bioresource Technol. 48 (1994) 79-81.
DOI: https://doi.org/10.1016/0960-8524(94)90141-4[18] R. Sivaraj, C. Namasivayam, K. Kadirvelu, Orange peel as an adsorbent in the removal of acid violet 17 (Acid Dye) from aqueous solution, Waste Management. 21(1) (2001) 105-110.
DOI: https://doi.org/10.1016/s0956-053x(00)00076-3[19] B.H. Hameed, A.L. Ahmad, K.N.A. Latiff, Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust, Dyes and Pigments. 75(1) (2007) 143-149.
DOI: https://doi.org/10.1016/j.dyepig.2006.05.039[20] B.H. Hameed , A.T.M. Din, A.L. Ahmad, Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies, J. Hazard Mater. 141(3) (2007) 819-825.
DOI: https://doi.org/10.1016/j.jhazmat.2006.07.049[21] I.A.W. Tan, B.H. Hameed, A.L. Ahmad, Equilibrium and kinetic studies on basic dye adsorption by oil palm fiber activated carbon, Chem. Eng. J. 127(1-3) (2007) 111-119.
DOI: https://doi.org/10.1016/j.cej.2006.09.010[22] J. Cenens, R.A. Schoonheydt, Visible spectroscopy of methylene blue on hectorite, laponite B, and barasym in aqueous suspension, Clay and Clay Minerals. 36(3) (1988) 214–224.
DOI: https://doi.org/10.1346/ccmn.1988.0360302[23] M.H. Salmani, M. Vakili, M.H. Ehrampoush, A comparative study of copper (ii) removal on iron oxide, aluminum oxide and activated carbon by continuous down flow method, J. Toxicology and Environ. Health Sci. 5(8) (2013) 150-155.
DOI: https://doi.org/10.5897/jtehs2013.0275[24] J.M. Paturau, Bio-Products of the Sugar Cane Industry, 3rd ed., Elsevier, Amsterdam, Netherlands, (1989).
[25] M.A. Hossain et al., Kinetics of Cr(VI) adsorption on used black tea leaves, Journal of Chemical Engineering of Japan. 38(6) (2005) 402-405.
DOI: https://doi.org/10.1252/jcej.38.402[26] M.A. Hossain et al., Optimization of parameters for Cr(VI) adsorption on used black tea leaves, Adsorption. 11 (2005) 555-564.
DOI: https://doi.org/10.1007/s10450-005-5613-4[27] M.A. Hossain, M. Kumita, S. Mori, SEM characterization of the mass transfer of Cr(VI) during the adsorption on used black tea leaves, African J. Pure and Appl. Chem. 4(7) (2010) 135-141.
[28] M.A. Hossain, Z. Hasan, T.S.A. Islam, An equilibrium study on adsorption of Reactive Black 5 on used black tea leaves, Bangladesh J. Agri. and Environ. 7(1) (2011) 30-35.
[29] M.A. Hossain, Z. Hasan, T.S.A. Islam, Kinetic evaluation on the adsorption of Reactive Black 5 on used black tea leaves, Dhaka Univ. J. Sci. 59(2) (2011) 193-197.
[30] M.A. Hossain, M.S. Alam, Adsorption kinetics of Rhodamine-B on used black tea leaves, Iran. J. Environ. Health. Sci. Eng. 9 (2012) 2-15.
[31] M.A. Hossain, M.A. Rahman, Equilibrium adsorption of Rhodamine B on used black tea leaves from acidic aqueous solution, Orbital Elec. J. Chem. 4(3) (2012) 187-201.
[32] M.A. Hossain, M.A. Rahman, Removal of Basic Violet 10 from neutral aqueous solution by adsorption on used black tea leaves, Int. J. Chem. 2(2) (2013) 83-94.
[33] M.A. Hossain, M.T. Hassan, Kinetic and thermodynamic studies of the adsorption of Crystal Violet on used black tea leaves, Orbital: Elec. J. Chem. 5(3) (2013) 148-156.
[34] M.A. Hossain, M.L. Hossain, Dynamic modeling of the transport mechanism of Malachite Green to adsorb on used black tea leaves, Int. J. Recent Scientific Res. 4(10) (2013) 1575-1579.
[35] M.A. Hossain, M.L. Hossain, Kinetic study of Malachite Green adsorption on used black tea leaves from aqueous solution, Int. J. Adv. Res. 2(4) (2014) 360-374.
[36] M.A. Hossain, T. Hassan, M.L. Hossain, Adsorption of Crystal Violet on used black tea leaves from acidic solution: equilibrium, thermodynamic and mechanism studies, Int. J. Sci. 4(10) (2015) 31-139.
DOI: https://doi.org/10.18483/ijsci.849[37] M.A. Hossain, R. Ahmed, Kinetics and thermodynamics of adsorption for the removal of Fast Green by used black tea leaves from aquatic environment, British J. Env. Sci. 3(5) (2015) 32-44.
[38] M.A. Hossain, M.L. Hossain, T. Hassan, Equilibrium, thermodynamic and mechanism studies of Malachite Green adsorption on used black tea leaves from acidic solution, Int. Letters of Chemistry, Physics and Astronomy. 64 (2016) 77-88.
DOI: https://doi.org/10.18052/www.scipress.com/ilcpa.64.77[1] N. Akbar, N. Rosman, S. Hambali, A. Abu Bakar, "Adsorption of Methylene Blue by Banana Stem Adsorbent in a Continuous Fixed Bed Column Study", IOP Conference Series: Earth and Environmental Science, Vol. 616, p. 012058, 2020
DOI: https://doi.org/10.1088/1755-1315/616/1/012058[2] V. Bello, O. Olafadehan, "Comparative investigation of RSM and ANN for multi-response modeling and optimization studies of derived chitosan from Archachatina marginata shell", Alexandria Engineering Journal, Vol. 60, p. 3869, 2021
DOI: https://doi.org/10.1016/j.aej.2021.02.047