Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > ILCPA Volume 77 > Structural and Optical Properties of Thermally...
< Back to Volume

Structural and Optical Properties of Thermally Oxidized Zirconium Dioxide Films

Full Text PDF

Abstract:

Zirconium oxide (ZrO2) thin films were grown by thermal oxidation of metallic zirconium films deposited by sputtering of zirconium target by DC magnetron sputtering technique. The metallic zirconium films were thermally oxidized in oxygen atmosphere at different temperatures in the range from 300°C to 500°C. The as-deposited and oxidized films were characterized for their chemical composition by energy dispersive X-ray analysis, structure by X-ray diffraction, chemical binding configuration with Fourier transform infrared spectroscopy and optical absorption using UV-Vis NIR spectrophotometer. Metallic zirconium film was polycrystalline in nature with hexagonal structured Zr. The zirconium films were transformed into monoclinic ZrO2 with polycrystalline in nature at oxidation temperature of 400°C. Crystallite size of the ZrO2 films increased from 78 nm to 108 nm with increase in the oxidation temperature form 400°C to 500°C. The optical band gap increased from 5.42 eV to 5.46 eV and refractive index decreased from 2.05 to 2.02 with increase of oxidation temperature from 400°C to 500°C.

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 77)
Pages:
15-25
Citation:
V. Sunke and U. Suda, "Structural and Optical Properties of Thermally Oxidized Zirconium Dioxide Films", International Letters of Chemistry, Physics and Astronomy, Vol. 77, pp. 15-25, 2018
Online since:
January 2018
Export:
Distribution:
References:

[1] J. Gao, Y. He, D. Wang, Fabrication and high temperature oxidation resistance ZrO2/Al2O3 microlaminated coatings on stainless steel, Mater. Chem. Phys. 123 (2010) 731-736.

DOI: https://doi.org/10.1016/j.matchemphys.2010.05.047

[2] G.D. Wilk, R.M. Willack, J.M. Anthony, High-k gate dielectrics, current status and materials properties consideration, J. Appl. Phys. 89(10) (2001) 5243-5275.

DOI: https://doi.org/10.1063/1.1361065

[3] J. Okabayashi et al., Chemical reaction and metallic cluster formation by annealing temperature control in ZrO2 gate dielectrics on Si, Appl. Phys. Lett. 85(24) (2004) 5959-5961.

DOI: https://doi.org/10.1063/1.1835001

[4] K. Sayama, H. Arakawa, Photocatalytic decomposition of water and photocatalytic reduction of carbon dioxide over ZrO2 catalyst, J. Phys. Chem. 97(3) (1993) 531-533.

DOI: https://doi.org/10.1021/j100105a001

[5] D.S. Lee et al., Resistance switching of the nonstoichiometric zirconium oxide for non-volatile memory applications, IEEE Electron Dev. Lett. 26(10) (2005) 719-721.

[6] S. Venkataraj et al., Structural and optical properties of thin zirconium oxide films by reactive direct current magnetron sputtering, J. Appl. Phys. 92(7) (2002) 3599-3607.

DOI: https://doi.org/10.1063/1.1503858

[7] R.W. Lambert et al., Facet passivation processes for the improvement of Al-containing semiconductor laser diodes, J. Light Technol. 24(2) (2006) 956-961.

[8] K. Joy et al., Effect of sol concentration on the structural, morphological, optical and photoluminescence properties of zirconium thin films, Thin Solid Films. 520 (2012) 2683-2688.

DOI: https://doi.org/10.1016/j.tsf.2011.11.038

[9] Y.S. Yang et al., Ferroelectricity and electric conduction characteristics of Sr-modified lead zirconium titanate thin film capacitors, J. Appl. Phys. Part I. 36(2) (1997) 749-753.

DOI: https://doi.org/10.1143/jjap.36.749

[10] L.A. Peyser et al., Photoactivated fluorescence from individual silver nanoclusters, Science. 291 (2001) 103-106.

DOI: https://doi.org/10.1126/science.291.5501.103

[11] G. Slefanic, S. Music, A. Sekulic, Influence of precipitation chemistry and ball milling on the thermal behaviour of zirconium hydroxide, Thermochim. Acta. 273 (1996) 119-133.

DOI: https://doi.org/10.1016/0040-6031(95)02665-7

[12] J.W. Bae et al., Preparation of ZrO2 dielectric layers by subsequent oxidation after Zr film deposition with negative substrate bias voltage, Metals and Materials International. 16(3) (2010) 447-452.

DOI: https://doi.org/10.1007/s12540-010-0615-5

[13] M.M. Larijani, E. Hasani, S. Safa, Annealing temperature effect on the optical properties of thermally oxidized nanocrystalline ZrO2 thin films grown on glass substrates, Appl. Surf. Sci. 290 (2014) 490-494.

DOI: https://doi.org/10.1016/j.apsusc.2013.11.131

[14] M.G. Krishna, K.N. Rao, S. Mohan, Optical and structural characterization of evaporated zirconia films, Appl. Phys. Lett. 57(6) (1990) 557-559.

DOI: https://doi.org/10.1063/1.103645

[15] A. Banarji, A. Hassanpour, Modification of laser induced damage threshold of ZrO2 thin films by using time-temperature gradient annealing, Appl. Surf. Sci. 258 (2012) 2397-2403.

DOI: https://doi.org/10.1016/j.apsusc.2011.10.058

[16] X. Ling et al., Influence of oxygen partial pressure on the laser induced damage resistance of ZrO2 films in vacuum, Vacuum. 119 (2015) 145-150.

DOI: https://doi.org/10.1016/j.vacuum.2015.05.012

[17] A. Singh et al., Investigation on depth resolved composition of electron beam deposited ZrO2 thin films, Appl. Surf. Sci. 419 (2017) 337-341.

[18] W.T. Tang et al., Synthesis and characterization of HfO2 and ZrO2 thin films deposited by plasma assisted reactive pulsed laser deposition at low temperature, Thin Solid Films. 518 (2010) 5442-5446.

DOI: https://doi.org/10.1016/j.tsf.2010.04.012

[19] W. Zhang et al., Infrared and Raman spectroscopic studies of optically transparent zirconia (ZrO2) films deposited by plasma-assisted reactive pulsed laser deposition, Appl. Spectroscopy. 65(5) (2011) 522-527.

DOI: https://doi.org/10.1366/10-06198

[20] S. Korkmaz et al., Thermal treatment effect on the optical properties of ZrO2 thin films deposited by thermionic vacuum arc, Vacuum. 86(12) (2012) 1930-(1933).

DOI: https://doi.org/10.1016/j.vacuum.2012.05.002

[21] W. Li et al., Structure and properties of zirconia (ZrO2) films fabricated by plasma-assisted cathodic arc deposition, J. Phys. D: Appl. Phys. 40(8) (2007) 2293-2299.

DOI: https://doi.org/10.1088/0022-3727/40/8/s08

[22] K.P.S.S. Hembram et al., Electrical and structural properties zirconia thin films prepared by reactive magnetron sputtering, Physica B. 399 (2007) 21-26.

DOI: https://doi.org/10.1016/j.physb.2007.05.022

[23] G. Sethi et al., Influence of reactive sputterdeposition conditions on crystallization of zirconium oxide thin films, J. Vac. Sci. Technol. A. 27(3) (2009) 577-583.

[24] R. Yusoh et al., Determination of the thickness and optical constants of ZrO2 by spectroscopic ellipsometry and spectrophotometric method, Procedia Eng. 8 (2011) 223-227.

DOI: https://doi.org/10.1016/j.proeng.2011.03.041

[25] S. Uthanna et al., Influence of annealing temperature on Electronic and dielectric properties of ZrO2 thin films on Si, AIP Proc. 1451 (2012)242-244.

DOI: https://doi.org/10.1063/1.4732428

[26] S. Zhao et al., Optical properties and structural characterization of bias sputtered ZrO2 films, J. Alloys Compd. 453 (2008) 453-457.

DOI: https://doi.org/10.1016/j.jallcom.2006.11.134

[27] H.H. Zhang, C.Y. Ma, Q.Y. Zhang, Scaling behaviour and structure transition of ZrO2 films deposited by RF magnetron sputtering, Vacuum. 83(11) (2009) 1311-1316.

DOI: https://doi.org/10.1016/j.vacuum.2009.04.041

[28] N. Li et al., Evaluation of ion conductivity of ZrO2 thin films prepared by reactive sputtering in O2, HfO2 and H2O+H2O2 mixed gases, Thin Solid Films. 520 (2012) 5137-5140.

DOI: https://doi.org/10.1016/j.tsf.2012.04.024

[29] N. Li et al., Effects of substrate temperature on the ion conductivity of hydrated ZrO2 thin films prepared by reactive sputtering in H2O atmosphere, Solar Energy Mater. Sol. Cells. 99 (2012) 160-165.

DOI: https://doi.org/10.1016/j.solmat.2011.03.037

[30] U.S. Patil et al., Investigation of various properties for zirconium oxide films synthesized by sputtering, Proceedia Technol. 23 (2016) 336-343.

[31] J.H. Hong, W.J. Choi, J.M. Myoung, Properties of ZrO2 dielectric layers grown by metal- organic molecular beam epitaxy, Microelectronic Engineering. 70(1) (2003) 35-40.

DOI: https://doi.org/10.1016/s0167-9317(03)00388-5

[32] O. Pakma et al., Wet chemical methods for producing mixing crystalline phase ZrO2 thin film, Appl. Surf. Sci. 337 (2016) 159-166.

[33] S. Cherneva et al., Nanoindentation investigation of mechanical properties of ZrO2, ZrO2-Y2O3, Al2O3 and TiO2 thin films deposited on stainless steel OC 404 substrate by spray pyrolysis, Mater. Sci. Eng. B. 183 (2014) 12-16.

DOI: https://doi.org/10.1016/j.mseb.2013.12.006

[34] J.J. Yu, J.Y. Zhang, I.W. Boyd, Formation of stable zirconium oxide on silicon by photo-assisted sol-gel processing, Appl. Surf. Sci. 186(1) (2002) 190-194.

DOI: https://doi.org/10.1016/s0169-4332(01)00624-9

[35] K. Joy et al., Effects of annealing temperature on the structural and photoluminescence properties of nanocrystalline ZrO2 thin films prepared by sol gel route, J. Phys. Chem. Solids. 72 (2011) 673-677.

DOI: https://doi.org/10.1016/j.jpcs.2011.02.012

[36] I.J. Berlin, K. Joy, Optical enhancement of Au doped ZrO2 thin films by sol gel dip coating method, Physica B. 457 (2015) 182-187.

DOI: https://doi.org/10.1016/j.physb.2014.10.013

[37] J. Aarik et al., Influence of carrier gas pressure and flow rate on atomic layer deposition of HfO2 and ZrO2 thin films, Appl. Surf. Sci. 252(16) (2006) 5723-5734.

DOI: https://doi.org/10.1016/j.apsusc.2005.07.067

[38] B.R. Konda et al., High-k ZrO2 dielectric thin films on GaAs semiconductor with reduced regrowth of native oxides by atomic layer deposition, Chem. Phys. Lett. 583 (2013) 74-79.

DOI: https://doi.org/10.1016/j.cplett.2013.08.012

[39] D.B. Cullity, Elements of X-ray diffraction, 2nd End. Addition Wesley, (1978).

[40] G.M. Rignanese et al., First-principles investigation of high-k dielectrics, comparison between the silicates and oxides of hafnium and zirconium, Phys. Rev. B. 69(18) (2004) 184301.

DOI: https://doi.org/10.1103/physrevb.69.184301

[41] J. Tauc, Amorphous and liquid semiconductors, Plenum Press, New York, (1974).

Show More Hide
Cited By:

[1] V. Chauhan, R. Gupta, V. Kumar, J. Ram, F. Singh, M. Prasad, S. Kumar, S. Ojha, P. Alvi, R. Mehra, R. Kumar, "High energy (150 MeV) Fe11+ ion beam induced modifications of physico-chemical and photoluminescence properties of high-k dielectric nanocrystalline zirconium oxide thin films", Ceramics International, 2019

DOI: https://doi.org/10.1016/j.ceramint.2019.06.124

[2] V. Hung, L. Huong, D. Hai, "Investigation of Thermodynamic Properties of Zirconia Thin Films by Statistical Moment Method", Materials Sciences and Applications, Vol. 09, p. 949, 2018

DOI: https://doi.org/10.4236/msa.2018.912068