Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 77 > Modelling All-Optical Switching and Limiting...
< Back to Volume

Modelling All-Optical Switching and Limiting Properties of AlAs Photonic Crystals

Full Text PDF

Abstract:

The incorporation of defect modes into the perfect crystal structure allows the control of the flow of light by altering the photonic bandgap and thereby can be manipulated to achieve optical switching. A model for all optical switching and limiting based on two dimensional photonic crystals is proposed for AlAs and the performance in square and hexagonal lattice structures were evaluated. Simulations were done using 2D finite difference time domain model incorporating instantaneous Kerr’s nonlinearity. The optimal nonlinear resonant frequencies and the refractive index change required for the performance in the nonlinear regime were obtained. The limiter effectiveness is analysed using extinction ratio. The lattice constant and the optimal microcavity distance required for the proposed model to work as a switch and a limiter in the telecommunication wavelength of 1.55 µm were obtained asand 2a respectively.

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 77)
Pages:
1-14
Citation:
M.G. P. S. Fernando and K.A.I.L. Wijewardena Gamalath, "Modelling All-Optical Switching and Limiting Properties of AlAs Photonic Crystals", International Letters of Chemistry, Physics and Astronomy, Vol. 77, pp. 1-14, 2018
Online since:
January 2018
Export:
Distribution:
References:

[1] J.D. Joannopoulos, M. Soljacic, Enhancement of nonlinear effects using photonic crystals, Nature Materials. 3(4) (2004) 211-219.

DOI: https://doi.org/10.1038/nmat1097

[2] J.D. Joannopoulos et al., Photonic crystals molding the flow of light, 2nd ed., New Jersey: Princeton University press, (2008).

[3] J.C. Attila Mekis et al., High Transmission through Sharp Bends in Photonic Crystal Waveguides, Physical Review Letters. 77(18) (1996) 3787-3790.

DOI: https://doi.org/10.1103/physrevlett.77.3787

[4] A. Mekis, S. Fan, J.D. Joannopoulos, Bound states in photonic crystal waveguides and waveguide bends, Physical Review B. 58(8) (1998) 4809-4817.

DOI: https://doi.org/10.1103/physrevb.58.4809

[5] P.H.F. Ramos-Mendieta, Tunable photonic crystals with semiconducting constituents, Physical Review Letters. 85(9) (2000) 1875-1878.

DOI: https://doi.org/10.1103/physrevlett.85.1875

[6] A. Figotin, Y.A. Godin, I. Vitebsky, Two-dimensional tunable photonic crystals, Physical Review B. 57(5) (1998) 2841-2848.

DOI: https://doi.org/10.1103/physrevb.57.2841

[7] P. A. Franken et al., Generation of optical harmonics, Physical Review Letters. 7(4) (1961) 118-120.

[8] P. Tran, Optical switching with a nonlinear photonic crystal: a numerical study, Optics Letters. 21(15) (1996) 1138-1140.

DOI: https://doi.org/10.1364/ol.21.001138

[9] M. Danaie, H. Kaatuzian, Employing optical nonlinearity in photonic crystals: a step towards all-optical logic gates, in: Photonic Crystals-Innovative Systems, Lasers and Waveguides, InTech, (2012).

DOI: https://doi.org/10.5772/32878

[10] M. Scalora et al., Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials, Phys. Rev. Lett. 73(10) (1994) 1368-1371.

DOI: https://doi.org/10.1103/physrevlett.73.1368

[11] S. Scholz, O. Hess, R. Rühle, Dynamic cross-waveguide optical switching with a nonlinear photonic band-gap structure, Optics Express. 3(1) (1998) 28-34.

DOI: https://doi.org/10.1364/oe.3.000028

[12] A. T. Rahmati, N. Nozhat, N. Granpayeh, Photonic crystal switches based on nonlinear directional couplers, in: 18th Iranian Conference on Electrical Engineering (ICEE), Isfahan, (2010).

DOI: https://doi.org/10.1109/iraniancee.2010.5507105

[13] M.F. Yanik et al., All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry, Optics Letters. 28(24) (2003) 2506-2508.

DOI: https://doi.org/10.1364/ol.28.002506

[14] N. Nozhat, A.T. Rahmati, N. Granpayeh, An all optical switch based on nonlinear photonic crystal microcavities, in: Progress in Electromagnetics Research Symposium (PIERS) Proceedings, Moscow, Russia, August 18-21, (2009).

[15] A. Locatelli et al., All optical switching in ultrashort photonic crystal couplers, Optics Communications. 237 (2004) 97-102.

DOI: https://doi.org/10.1016/j.optcom.2004.03.081

[16] A.T. Rahmati, N. Granpayeh, Simulation of an ultrashort 2D photonic crystal switch based on nonlinear directional coupler, in: Progress in Electromagnetics Research Symposium (PIERS) Proceedings, Moscow, Russia, August 18-21, (2009).

[17] I.V. Guryev et al., Optical power limiter on the basis of 2D photonic crystal, in: Advanced Optoelectronics and Lasers, CAOL 2008, 4th International Conference, September 29 - October 4, Alushta, Crimea, Ukraine, (2008).

DOI: https://doi.org/10.1109/caol.2008.4671887

[18] M. Danaie, H. Kaatuzian, H. S. Kojori, Design of a photonic crystal optical limiter using nonlinear Kerr effect, in: Proc. SPIE 8205, 2011 International Conference on Photonics, 3D-Imaging, and Visualization, Guangzhou, China, (2011).

DOI: https://doi.org/10.1117/12.906311

[19] M. Danaie, H. Kaatuzian, Design and simulation of an all-optical photonic crystal AND gate using nonlinear Kerr effect, Optical and Quantum Electronics. 44(1) (2012) 27-34.

DOI: https://doi.org/10.1007/s11082-011-9527-y

[20] A. Naqavi et al., Optical bistable switching with Kerr nonlinear materials exhibiting a finite response time in two-dimensional photonic crystals, in: Proc. SPIE 7713, Photonic Crystal Materials and Devices IX, 77131T, Belgium, (2010).

DOI: https://doi.org/10.1117/12.854620

[21] K. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Transactions on Antennas and Propagation. 14(3) (1966) 302-307.

DOI: https://doi.org/10.1109/tap.1966.1138693

[22] S. Gedney, Introduction to the finite-difference time-domain (FDTD) method for electromagnetics, Arizona: Morgan & Claypool Publishers, (2011).

[23] R.W. Boyd, Nonlinear optics, Third Edition, New York: Academic Press, (2007).

[24] M.H. Holmes, Multiple scales, in: Introduction to Perturbation Methods, London, Springer, 2013, p.145.

[25] J.P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics. 114(2) (1994) 185-200.

DOI: https://doi.org/10.1006/jcph.1994.1159

[26] J.C. Veihl, R. Mittra, Efficient implementation of Berenger's perfectly matched layer (PML) for finite-difference time-domain mesh truncation, IEEE Microwave and Guided Wave Letters. 6(2) (1996) 94-96.

DOI: https://doi.org/10.1109/75.482000

[27] J.P. Berenger, Perfectly matched layer for the FDTD solution of wave-structure interaction problems, IEEE Transactions on Antennas and Propagation. 44(1) (1996) 110-117.

DOI: https://doi.org/10.1109/8.477535

[28] Z.S. Sacks et al., A perfectly matched anisotropic absorber for use as an absorbing boundary condition, IEEE Transactions on Antenas and Propergation. 43(12) (1995) 1460-1463.

DOI: https://doi.org/10.1109/8.477075

[29] I. Maksymov, Modelling of photonic components based on nonlinear photonic crystals, Thesis, Rovira i Virgili University, (2010).

[30] R.E. Fern, A. Onton, Refractive index of AlAs, J. Appl. Phys. 42(9) (1971) 3499-3500.

Show More Hide
Cited By:

[1] M. Abdullah, H. Bakhtiar, G. Krishnan, M. Aziz, W. Danial, S. Islam, "Transition from saturable absorption to reverse saturable absorption of carmoisine dye under low-powered continuous wave laser excitation", Optics & Laser Technology, Vol. 115, p. 97, 2019

DOI: https://doi.org/10.1016/j.optlastec.2019.01.032