Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > ILCPA Volume 76 > Effects of Two-Dimensional Noncommutative Theories...
< Back to Volume

Effects of Two-Dimensional Noncommutative Theories on Bound States Schrödinger Diatomic Molecules under New Modified Kratzer-Type Interactions

Full Text PDF

Abstract:

In this work, an analytical expression for the nonrelativistic energy spectrum of some diatomic molecules was obtained through the Bopp’s shift method in the noncommutative (NC) two-dimensional real space-phase symmetries (NC: 2D-RSP) with a new modified Kratzer-type potential (NMKP) in the framework of two infinitesimal parameters and due to (space-phase) noncommutativity, by means of the solution of the noncommutative Schrödinger equation. The perturbation property of the spin-orbital Hamiltonian operator and new Zeeman effect of two-dimensional system are investigated. We have shown that, the new energy of diatomic molecule is the sum of ordinary energy of modified Kratzer-type potential, in commutative space, and new additive terms due to the contribution of the additive part of the NMKP. We have shown also that, the group symmetry of (NC: 2D-RSP) reduce to new sub-group symmetry of NC two-dimensional real space (NC: 2D-RSP) under new modified Kratzer-type interactions.

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 76)
Pages:
1-11
Citation:
A. Maireche, "Effects of Two-Dimensional Noncommutative Theories on Bound States Schrödinger Diatomic Molecules under New Modified Kratzer-Type Interactions", International Letters of Chemistry, Physics and Astronomy, Vol. 76, pp. 1-11, 2017
Online since:
October 2017
Export:
Distribution:
References:

[1] M. Yildiz, Energy levels and atomic lifetimes of Rydberg states in neutral Indium, Acta Physica Polonica A. 123(1) (2013) 25-30.

DOI: https://doi.org/10.12693/aphyspola.123.25

[2] D. Mikulski et al., Exact solution of the Schrödinger equation with a new expansion of anharmonic potential with the use of the supersymmetric quantum mechanics and factorization method, J. Math. Chem. 53(9) (2015) 2018–(2027).

DOI: https://doi.org/10.1007/s10910-015-0532-4

[3] B.I. Ita, A.I. Ikeuba, A.N. Ikot, Solutions of the Schrödinger equation with quantum mechanical gravitational potential plus harmonic oscillator potential, Commun. Theor. Phys. 61(2) (2014) 149.

DOI: https://doi.org/10.1088/0253-6102/61/2/01

[4] D. Agboola, Complete analytical solutions of the Mie-type potentials in n-dimensions, Acta Physica Polonica A. 120(3) (2011) 371–377.

DOI: https://doi.org/10.12693/aphyspola.120.371

[5] C. Berkdemir, A. Berkdemir, J. Han, Bound state solutions of the Schrödinger equation for modified Kreutzer's molecular potential, Chemical Physics Letters. 417(4) (2006) 326–329.

DOI: https://doi.org/10.1016/j.cplett.2005.10.039

[6] S. Erkoc, R. Sever, Path-integral solution for a Mie-type potential, Phys. Rev. D. 30(10) (1984) 2117.

DOI: https://doi.org/10.1103/physrevd.30.2117

[7] J. Sadeghia, B. Pourhassan, Exact solution of the non-central modified Kratzer potential plus a ring-shaped like potential by the factorization method, Electronic Journal of Theoretical Physics. 5(17) (2008) 197-206.

[8] S.M. Ikhdair, R. Sever, Exact quantization rule to the Kratzer-type potentials: an application to the diatomic molecules, J. Math. Chem. 45 (2009) 1137–1152.

DOI: https://doi.org/10.1007/s10910-008-9438-8

[9] A. Connes, M.R. Douglas, A. Schwarz, Noncommutative geometry and matrix theory, Journal of High Energy Physics. 1998(02) (1998) 003.

DOI: https://doi.org/10.1088/1126-6708/1998/02/003

[10] A.E.F. Djemei, H. Smail, On quantum mechanics on noncommutative quantum phase space, Commun. Theor. Phys. 41(6) (2004) 837-844.

DOI: https://doi.org/10.1088/0253-6102/41/6/837

[11] J. Lee, Star products and the Landau problem, Journal of the Korean Physical Society. 47(4) (2005) 571-576.

[12] A. Jahan, Noncommutative harmonic oscillator at finite temperature: a path integral approach, Brazilian Journal of Physics. 37(4) (2007) 144-146.

DOI: https://doi.org/10.1590/s0103-97332008000100026

[13] Y. Yuan et al., Spin ½ relativistic particle in a magnetic field in NC phase space, Chinese Physics C. 34(5) (2010) 543.

[14] J. Mamat, S. Dulat, H. Mamatabdulla, Landau-like atomic problem on a non-commutative phase space, Int. J. Theor. Phys. 55(6) (2016) 2913-2918.

DOI: https://doi.org/10.1007/s10773-016-2922-1

[15] F. Hoseini, J.K. Saha, H. Hassanabadi, Investigation of fermions in non-commutative space by considering Kratzer potential, Commun. Theor. Phys. 65(6) (2016) 695-700.

DOI: https://doi.org/10.1088/0253-6102/65/6/695

[16] K.H.C. Castello-Branco, A.G. Martins, Free-fall in a uniform gravitational field in noncommutative quantum mechanics, Journal of Mathematical Physics. 51(10) (2010) 102106.

DOI: https://doi.org/10.1063/1.3466812

[17] O. Bertolami, P. Leal, Aspects of phase-space noncommutative quantum mechanics, Physics Letters B. 750 (2015) 6–11.

DOI: https://doi.org/10.1016/j.physletb.2015.08.024

[18] C. Bastos et al., Weyl–Wigner formulation of noncommutative quantum mechanics, J. Math. Phys. 49(7) (2008) 072101.

[19] J.Z. Zhang, Fractional angular momentum in non-commutative spaces, Physics Letters B. 584(1-2) (2004) 204–209.

DOI: https://doi.org/10.1016/j.physletb.2004.01.049

[20] V.P. Nair, A.P. Polychronakos, Quantum mechanics on the noncommutative plane and sphere, Physics Letters B. 505(1–4) (2001) 267-274.

DOI: https://doi.org/10.1016/s0370-2693(01)00339-2

[21] J. Gamboa, M. Loewe, J.C. Rojas, Noncommutative quantum mechanics, Phys. Rev. D. 64(6) (2001) 067901.

[22] F.G. Scholtz et al., Dual families of noncommutative quantum systems, Phys. Rev. D. 71(8) (2005) 085005.

[23] M. Chaichian, M.M. Sheikh-Jabbari, A. Tureanu, Hydrogen atom spectrum and the Lamb shift in noncommutative QED, Phys. Rev. Lett. 86(13) (2001) 2716.

DOI: https://doi.org/10.1103/physrevlett.86.2716

[24] A. Maireche, Nonrelativistic atomic spectrum for companied harmonic oscillator potential and its inverse in both NC-2D: RSP, International Letters of Chemistry, Physics and Astronomy, 56 (2015) 1-9.

DOI: https://doi.org/10.18052/www.scipress.com/ilcpa.56.1

[25] A. Maireche, A new nonrelativistic investigation for the lowest excitations states of interactions in one-electron atoms, muonic, hadronic and Rydberg atoms with modified inverse power potential, International Frontier Science Letters. 9 (2016).

DOI: https://doi.org/10.18052/www.scipress.com/ifsl.9.33

[26] A. Maireche, New bound states for modified vibrational-rotational structure of supersingular plus Coulomb potential of the Schrödinger equation in one-electron atoms, International Letters of Chemistry, Physics and Astronomy. 73 (2017) 31-45.

DOI: https://doi.org/10.18052/www.scipress.com/ilcpa.73.31

[27] A. Maireche, Investigations on the relativistic interactions in one-electron atoms with modified Yukawa potential for spin 1/2 particles, International Frontier Science Letters. 11 (2017) 29-44.

DOI: https://doi.org/10.18052/www.scipress.com/ifsl.11.29

[28] A. Maireche, Deformed quantum energy spectra with mixed harmonic potential for nonrelativistic Schrödinger equation, J. Nano- Electron. Phys. 7(2) (2015) 02003-1–02003-6.

[29] A. Maireche, A recent study of quantum atomic spectrum of the lowest excitations for Schrödinger equation with typical rational spherical potential at Planck's and nanoscales, J. Nano- Electron. Phys. 7(4) (2015) 03047-1–03047-7.

[30] A. Maireche, The nonrelativistic ground state energy spectra of potential counting Coulomb and quadratic terms in non-commutative two dimensional real spaces and phases, J. Nano- Electron. Phys. 8(1) (2016) 01021-1–01021-6.

DOI: https://doi.org/10.21272/jnep.8(1).01021

[31] A. Maireche, A new theoretical study of quantum atomic energy spectra for lowest excited states of central (PIHOIQ) potential in noncommutative spaces and phases symmetries at Plank's and nanoscales, J. Nano- Electron. Phys. 8(1) (2016).

DOI: https://doi.org/10.21272/jnep.8(2).02027

[32] A. Maireche, A new nonrelativistic atomic energy spectrum of energy dependent potential for heavy quarkouniom in noncommutative spaces and phases symmetries, J. Nano- Electron. Phys. 8(2) (2016) 02046-1–02046-6.

DOI: https://doi.org/10.21272/jnep.8(2).02046

[33] A. Maireche, A new relativistic study for interactions in one-electron atoms (spin ½ particles) with modified Mie-type potential, J. Nano- Electron. Phys. 8(4) (2016) 04027-1–04027-9.

DOI: https://doi.org/10.21272/jnep.8(4(1)).04027

[34] A. Maireche, A new nonrelativistic investigation for interactions in one-electron atoms with modified vibrational-rotational analysis of supersingular plus quadratic potential: extended quantum mechanics, J. Nano- Electron. Phys. 8(4) (2016).

DOI: https://doi.org/10.21272/jnep.8(4(2)).04076

[35] A. Maireche, Investigations on the relativistic interactions in one-electron atoms with modified anharmonic oscillator, J. Nanomed. Res. 4(4) (2016) 00097.

DOI: https://doi.org/10.15406/jnmr.2016.04.00097

[36] A. Maireche, A new nonrelativistic investigation for interactions in one-electron atoms with modified inverse-square potential: noncommutative two and three dimensional space phase solutions at Planck's and nano-scales. J Nanomed. Res 4(3) (2016).

DOI: https://doi.org/10.15406/jnmr.2016.04.00090

[37] A. Maireche, New exact bound states solutions for (C.F.P.S. ) potential in the case of Non-commutative three dimensional non relativistic quantum mechanics, Med. J. Model. Simul. 04 (2015) 060-072.

[38] A. Maireche, New bound state energies for spherical quantum dots in presence of a confining potential model at nano and Plank's scales, NanoWorld J. 1(4) (2016) 122-129.

DOI: https://doi.org/10.17756/nwj.2016-016

[39] A. Maireche, New quantum atomic spectrum of Schrödinger equation with pseudo harmonic potential in both noncommutative three dimensional spaces and phases, Lat. Am. J. Phys. Educ. 9(1) (2015) 1301.

[40] A. Maireche, Spectrum of hydrogen atom ground state counting quadratic term in Schrödinger equation, Afr. Rev Phys. 10 (2015) 177-183.

[41] A. Maireche, Deformed bound states for central fraction power potential: non relativistic Schrödinger equation, Afr. Rev Phys. 10 (2015) 97-103.

[42] A. Maireche, Spectrum of Schrödinger equation with H.L.C. Potential in non-commutative two-dimensional real space, Afr. Rev Phys. 9 (2014) 479-485.

[43] A. Maireche, A study of Schrödinger equation with inverse sextic potential in 2-dimensional non-commutative space, Afr. Rev Phys. 9 (2014) 185-193.

[44] A. Maireche, A complete analytical solution of the Mie-type potentials in non-commutative 3-dimensional spaces and phases symmetries, Afr. Rev Phys. 11 (2016) 111-117.

[45] A. Maireche, Atomic spectrum for Schrödinger equation with rational spherical type potential in non-commutative space and phase, Afr. Rev Phys. 10 (2016) 373-381.

[46] A. Maireche, New exact energy eigenvalues for (MIQYH) and (MIQHM) central potentials: non-relativistic solutions, Afr. Rev Phys. 11 (2016) 175-184.

[47] A. Maireche, The exact nonrelativistic energy eigenvalues for modified inversely quadratic Yukawa potential plus Mie-type potential, J. Nano- Electron. Phys. 9(2) (2017) 02017-1–02017-7.

DOI: https://doi.org/10.21272/jnep.9(2).02017

[48] A. Maireche, Deformed energy levels of a pseudoharmonic potential: nonrelativistic quantum mechanics, Yanbu Journal of Engineering and Science. 12 (2016) 55-63.

[49] M. Abramowitz, I.A. Stegun, Handbook of mathematical functions with formulas, Graphs and Mathematical Tables, Dover Publications, New York, (1965).

DOI: https://doi.org/10.2307/1266136
Show More Hide
Cited By:

[1] O. Hegacy, "Model for End-Stage Liver Disease (Meld) Score, As a Prognostic Factor for Cirrhotic Patients, Undergoing Hepatectomy for Hepatocellular Carcinoma", Gastroenterology & Hepatology : Open Access, Vol. 2, 2015

DOI: https://doi.org/10.15406/ghoa.2015.02.00044