Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 75 > Volumetric Properties of Sodium Cyclamate...
< Back to Volume

Volumetric Properties of Sodium Cyclamate Solutions in Presence of Glucose and Sucrose

Full Text PDF

Abstract:

Densities of sodium cyclamate (Na-cycl) in water and (0.1, 0.3, and 0.5) m (glucose/sucrose) have been measured at (298.15, 303.15, 308.15, and 313.15) K. From density values, partial molar volumes (V0Φ), expansion coefficient (E), Hepler’s constant (δ2V0Φ/δT2)p, apparent specific volumes (ASV), partial molar volumes of transfer (∆trsV0Φ), doublet (VAB) and triplet (VABB) interaction coefficients have been calculated. An increase in the values of V0Φ and ∆trsV0Φ was observed with increase in the concentration of glucose/sucrose. The positive values of E∞ and V0Φ are due to the strong solute-solvent interactions. The positive values of (δ2V0Φ/δT2)p suggest structure making behaviour of sodium cyclamate in water and in presence of glucose and sucrose. The positive values of (∆trsV0Φ) and VAB may be due to the interactions between hydrophilic group (–OH, C=O, and –O–) of glucose/sucrose and sodium ion of sodium cyclamate. All solutions studied exhibit sweet taste because ASV of all solutions ranges from (0.569 × 10-6) m3×kg-1 to (0.626 × 10-6) m3×kg-1.

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 75)
Pages:
37-46
Citation:
S. J. Kharat and S. M. Munde, "Volumetric Properties of Sodium Cyclamate Solutions in Presence of Glucose and Sucrose", International Letters of Chemistry, Physics and Astronomy, Vol. 75, pp. 37-46, 2017
Online since:
August 2017
Export:
Distribution:
References:

[1] T.H. Grenby, K.J. Parker, M. G. Lindley (Eds. ), Developments in sweeteners, 2. Appl. Sci. Publ., London und New York, (1983).

[2] T.H. Grenby, Prospects for sugar substitutes, Chem. Br. 27 (1991) 342-345.

[3] L. Mathlouthi, Laser-Raman spectra of D-glucose and D-sucrose in aqueous solutions, Carbohydr. Res. 81 (1980) 203-213.

[4] M. Mathalouthi, A.M. Suevre, G.G. Birch, Relation between the structure and properties of carbohydrates in aqueous solutions: sweetness of chlorinated sugars, Carbohydr. Res. 152 (1986) 47-61.

[5] G.G. Birch, S. Shamil, Structure-activity relationship in sweetness, Food Chem. 21(4) (1986) 245-258.

[6] S.J. Kharat, Density, viscosity, and ultrasonic velocity studies of aqueous solutions of sodium acetate at different temperatures, J. Mol. Liq. 140 (2008) 10-14.

[7] S.J. Kharat, Ultrasonic velocity and density studies of solutions of maleic acid and tartaric acid in water at T = (298. 15 and 308. 15) K, Int. J. Thermophys. 31 (2010) 585-594.

[8] S.J. Kharat, Partial molar volume, jones-dole coefficient, and limiting molar isentropic compressibility of sodium ibuprofen and its hydration number and hydration free energy, Thermochim. Acta. 566 (2013) 124-129.

[9] S.J. Kharat, Density, viscosity and ultrasonic velocity studies of aqueous solutions of sodium salycilate and its hydration free energy, Phys. Chem. Liq. 52(1) (2014) 7-16.

[10] S.A. Parke et al., A study of the solution properties of selected binary mixtures of the bulk and intense sweeteners in relation to their psychophysical characteristics, Food Chem. 67 (1999) 247-259.

[11] D.W. Kupke, Physical principles and techniques of physical chemistry, Part C, Academic press, New York, (1973).

[12] H.S. Harned, B.B. Owen, The physical chemistry of electrolytic solutions, ACS monograph No. 137 third ed., Reinhold publishing Corp., New York, (1958).

[13] E.F.G. Herington, Recommended reference materials for the realisation of physicochemical properties: density, Pure Appl. Chem. 45 (1976) 1-9.

[14] C. Klofutar, D. Rudan-Tasic, Apparent molar volume and apparent molar expansibility of lithium, sodium, potassium, and tetramethylammonium cyclohexylsulfamate in aqueous solution, Monatsh. Chem. 136(10) (2005) 1727-1736.

[15] A.K. Nain, D. Chand, Volumetric, ultrasonic, and viscometric behaviour of glycine, DL alanine, and L-valine in aqueous 1, 4-butanediol solutions at different temperature, J. Chem. Thermodyn. 41 (2009) 243–249.

[16] S. Ryshetti, A. Gupta, A.R. Ghardas, Acoustic and volumetric properties of betaine hydrochloride drug in aqueous D (+) glucose and sucrose solutions, J. Chem. Thermodyn. 77 (2014)123-130.

[17] L.G. Hepler, Thermal expansion and structure in water and in aqueous solutions, Can. J. Chem. 47 (1976) 359-367.

[18] M.N. Roy, R.K. Das, Bhattacharjee, Apparent molar volume, viscosity B-coefficient, and adiabatic compressibility of tetrabutylammonium bromide in aqueous ascorbic acid solutions at T = 298. 15, 308. 15, and 318. 15 K, Russ. J. Phys. Chem. A. 84(13) (2010).

[19] Z. Yan Jianji, W.J. Lu, Apparent molar volumes and viscosities of some α-Amino acids in aqueous sodium butyrate solutions at 298. 15 K, J. Chem. Eng. Data. 6 (2001) 217-222.

[20] K.L. Zhuo et al., Volumetric properties for the monosaccharide (D-xylose, D-arabinose, D-glucose, D-galactose)–NaCl–water systems at 298. 15 K, Carbohydr. Res. 328 (2000) 383.

[21] K. Zhuo et al, Volumetric parameters of interaction of monosaccharides (D-xylose, D arabinose, D-glucose, D-galactose) with NaI in Water at 298. 15 K, J. Solution Chem. 34(2) (2005) 155-170.

[22] K.L. Zhuo et al., Densities, apparent molar volume, and interaction parameters for the monosaccharide (D-xylose, D-Arabinose, D-glucose, D Galactose)-NaBr- water systems at 298. 15 K, Z. Phys. Chem. 215 (2001) 561-573.

[23] A. Pal, N. Chauhan, Volumetric, viscometric, and acoustic behaviour of diglycine in aqueous saccharide solutions at different temperatures, J. Mol. Liq. 149 (2009) 29–36.

DOI: https://doi.org/10.1016/j.molliq.2009.07.014

[24] A.K. Nain, R. Pal, R.K. Sharma, Volumetric, ultrasonic, and viscometric behaviour of l histidine in aqueous-glucose solutions at different temperatures, J. Chem. Thermodyn. 43 (2011) 603–612.

DOI: https://doi.org/10.1016/j.jct.2010.11.017

[25] Z. Yan, J. Wang, J. Lu, Apparent molar volumes and viscosities of some α-Amino acids in aqueous sodium butyrate solutions at 298. 15 K, J. Chem. Eng. Data. 46(2) (2001) 217-222.

[26] F.J. Millero, The model volumes of electrolytes, J. Chem. Rev. 71 (1976) 147-176.

[27] C. Klofutar, J. Havert, R.D. Tasic, Apparent molar volumes and apparent molar expansibility of sodium saccharin, potassium acesulfame and aspartame, Acta Chim. Slov. 53(3) (2006) 274-283.

[28] B.E. Conway, Ionic hydration in chemistry and physics, Elsevier, Amsterdam, The Netherlands, (1980).

[29] W.G. McMillan, J.E. Mayer, The Statistical thermodynamics of multicomponent systems, J. Chem. Phys. 13 (1945) 276-305.

[30] J.J. Kozak, W. Knight, W. Kauzman, Solute-solute interactions in aqueous solutions, J. Chem. Phys. 48 (1968) 675-690.

[31] H.L. Friedman, C.V. Krishanan, F. Franks (Ed), Water: A Comprehensive Treatise, Plenum, New York, Vol. 3, 1993, Chapter 1.

[32] F. Franks, M. Pedley, Michael, D.S. Reid, Solute interactions in dilute aqueous solutions. Part 1. -Microcalorimetric study of the hydrophobic interaction, J. Chem. Soc. Faraday Trans. I. 72 (1976) 359-367.

[33] A. Pal, S. Kumar, Volumetric properties of L-alanine, and L-valine in aqueous sucrose solutions at T = (288. 15 and 308. 15) K, J. Chem. Thermodyn. 37 (2005) 1085–1092.

[34] H.X. Jin, H.Y. Chen, Volumetric properties of 1- butyl-3-methylimidazolium tetrafluoroborate- glucose- water systems, J. Chem. Eng. Data. 57(4) (2012) 1134-1138.

[35] A. Ali et al., Volumetric, viscometric, and refractive index behaviour of a-amino acids and their groups contribution in aqueous D-glucose solution at different temperatures, J. Chem. Thermodyn. 38 (2006) 136–143.

[36] A.K. Nain, M. Lather, R.K. Sharma, Study of solute–solute and solute–solvent interactions of l-methionine in aqueous-sucrose solutions at different temperatures, J. Chem. Thermodyns. 58 (2013) 101–109.

[37] J.J. Savage, R.H. Wood, Enthalpy of dilution of aqueous mixtures of amides, sugars, urea, ethylene glycol, and pentaerythritol at 25°C: Enthalpy of interaction of the hydrocarbon, amide, and hydroxyl functional groups in dilute aqueous solutions, J. Solution Chem. 5 (1976).

[38] J.E. Desnoyers et al., Apparent molar volumes of alkali halides in water at 25 °C. Influence of structural hydration interactions on the concentration dependence, J. Phys. Chem. 73 (1969) 3346−3351.

[39] H.L. Friedman, C.V. Krishanan, Thermodynamics of ionic hydration, in: F. Franks (Ed), Water. A Comprehensive Treatise, Vol. 3, Plenum, New York, 1973, pp.1-118.

[40] S.A. Parke, G.G. Birch, Solution properties and sweetness response of selected bulk and intense sweeteners, J. Agri. Food Chem. 47 (1999) 1378-1384.

[41] S. Shamil et al., Apparent molar volumes and tastes of molecules with more than one sapophore, Chem. Senses. 12 (1987) 397-409.

[42] G.G. Birch, Role of water in sweet chemoreception, J. Pure Appl. Chem. 74 (2002) 1103-1108.

Show More Hide