Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 75 > Pressure Effects on the Optical Properties of...
< Back to Volume

Pressure Effects on the Optical Properties of LuVO4:Eu3+ Nanoparticles

Full Text PDF


The effect of hydrostatic pressure (varying up to 110 kbar) at the room temperature on three lines at 594nm, 615nm and 619nm positions in emission spectra and fluorescence lifetime t of the Eu3+ for 0-2 line (5D07F2 transition) in LuVO4: Eu3+ nanoparticles was studied. The results showed that the increase of the pressure induced lines red shift towards longer wavelengths for all considered lines with different rate. Also, the fluorescence lifetime τ for 5D07F2 transition nonlinearly decreased with pressure in the considered pressure range. Line positions and fluorescence lifetime τ, were explained by a model which took into account the effect of high pressure on: refractive index of crystal; compression, polarizability of the crystal and individual ions. Satisfactory agreement between measured and theoretical predicted values with error less than 2% was obtained.


International Letters of Chemistry, Physics and Astronomy (Volume 75)
B. Jovanić et al., "Pressure Effects on the Optical Properties of LuVO4:Eu3+ Nanoparticles", International Letters of Chemistry, Physics and Astronomy, Vol. 75, pp. 1-10, 2017
Online since:
Aug 2017

[1] X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev. 107(7) (2007) 2891-2959.

DOI: 10.1021/cr0500535

[2] S. He et al., A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis, Adv. Funct. Mater. 20(3) (2010) 453-459.

[3] J. Lee, S. Mahendra, P.J.J. Alvarez, Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations, ACS Nano. 4(7) (2010) 3580-3590.

DOI: 10.1021/nn100866w

[4] M.V. Yezhelyev et al., Emerging use of nanoparticles in diagnosis and treatment of breast cancer, Lancet Oncol. 7(8) (2006) 657-667.

[5] P. Wieacker, J. Steinhard, The prenatal diagnosis of genetic diseases, Dtsch Arztebl Int. 107(48) (2010) 857.

[6] B. Jovanić et al., Optical spectroscopy of nanocrystalline Gd3Ga5O12 doped with Eu3+ and high pressures, Mater. Chem. Phys. 132(2) (2012) 273-277.

DOI: 10.1016/j.matchemphys.2011.11.010

[7] A.H. Krumpel et al., Lanthanide 4f-level location in AVO4: Ln3+ (A= La, Gd, Lu) crystals, J. Phys.: Condens. Matter 21(11) (2009) 115503.

DOI: 10.1088/0953-8984/21/11/115503

[8] L. Lutterotti, S. Matthies, H. Wenk, MAUD: a friendly Java program for material analysis using diffraction, NewsLetter of the CPD. 21 (1999) 14-15.

[9] B.R. Jovanic, Lifetime of the ruby R1 line under ultrahigh pressure, Chem. Phys. Lett. 190(5) (1992) 440-442.

DOI: 10.1016/0009-2614(92)85169-b

[10] B. Lorenz, Y.R. Shen, W.B. Holzapfel, Characterization of the new luminescence pressure sensor SrFCl: Sm2+, International Journal of High Pressure Research. 12(2) (1994) 91-99.

DOI: 10.1080/08957959408203170

[11] B. Yan, X.Q. Su, LuVO4: RE3+ (RE= Sm, Eu, Dy, Er) phosphors by in-situ chemical precipitation construction of hybrid precursors, Optical Materials. 29(5) (2007) 547-551.

DOI: 10.1016/j.optmat.2005.08.050

[12] Z. Xu et al., Morphological control and luminescence properties of lanthanide orthovanadate LnVO4 (Ln= La to Lu) nano-/microcrystals via hydrothermal process, Cryst. Eng. Comm. 13(2) (2011) 474-482.

DOI: 10.1039/c0ce00161a

[13] B.R. Jovanić et al., Study of the high pressure effect on nanoparticles GdVO4: Eu3+ optical properties, Rad. Eff. Def. Solids. 170(7-8) (2015) 574-583.

[14] B.R. Jovanić et al., High-pressure optical studies of Y2O3: Eu3+ nanoparticles, Rad. Eff. Deff. Solids. 163(12) (2008) 925-931.

[15] S. Georgiescu et al., Effects of particle size on the luminescence of YVO4: Eu nanocrystals, Romanian Reports Phys. 60 (2008) 947-955.

[16] S.W. Allison, G.T. Gillies, Remote thermometry with thermographic phosphors: Instrumentation and applications, Rev. Sci. Instrum. 68(7) (1997) 2615-2650.

DOI: 10.1063/1.1148174

[17] B.R. Jovanić et al., High-pressure and optical properties of LaMgAl11O19: Sm3+ laser material, Rad. Eff. Def. Solids. 169(1) (2014) 48-56.

[18] C. Bungenstock, Th. Tröster, W.B. Holzapfel, Effect of pressure on free-ion and crystal-field parameters of Pr3+ in L OCl (L= La, Pr, Gd), Phys. Rev. B. 62(12) (2000) 7945.

DOI: 10.1103/physrevb.62.7945

[19] G. Huber, K. Syassen, W.B. Holzapfel, Pressure dependence of 4 f levels in europium pentaphosphate up to 400 kbar, Phys. Rev. B. 15(11) (1977) 5123.

DOI: 10.1103/physrevb.15.5123

[20] R. Praveena et al., Luminescence properties of Sm3+-doped P2O5–PbO–Nb2O5 glass under high pressure, J. Phys.: Condens. Matter. 21(3) (2008) 035108.

DOI: 10.1088/0953-8984/21/3/035108

[21] J.S. Bae et al., Crystalline and cathodoluminescent characteristics of Li-doped GdVO4: Eu3+ red phosphor powders, J. Korean Phys. Soc. 49(3) (2006) 860-864.

[22] C.K. Jayasankar et al., A fluorescence study of Tb3+ doped tellurite glass under pressure, J. Phys.: Condens. Matter. 16(39) (2004) 7007.

[23] G. Chen, J. Hölsä, J.R. Peterson, A luminescence study of single-crystal EuPO4 at high pressure, J. Chem. Phys. Solids. 58(12) (1997) 2031-(2037).

DOI: 10.1016/s0022-3697(97)00133-9

[24] D.P. Ma et al., Theoretical calculations of the R1 red shift of ruby under high pressure, Phys. Letter. A. 115(5) (1986) 245-248.

DOI: 10.1016/0375-9601(86)90475-5

[25] B.R. Jovanić et al., High-pressure optical studies of Y2O3: Eu3+ nanoparticles, Radiation Effects and Defects in Solids. 163 (2008) 925-931.

DOI: 10.1080/10420150802082705

[26] B.R. Jovanic, B. Radenkovic, Lj.D. Zekovic, The effect of pressure on the position and fluorescence lifetime for the 5D0→7F2 transition in Y1. 9Eu0. 1O3, J. Phys. Cond. Matt. 8(22) (1996) 4107.

[27] L. Yang et al., Size-induced variations in bulk/surface structures and their impact on photoluminescence properties of GdVO4: Eu3+ nanoparticles, Phys Chem Chem Phys. 14(28) (2012) 9956-9965.

DOI: 10.1039/c2cp41136a

[28] B.R. Jovanić et al., High-pressure optical studies of LMA: V2+, Mater. Chem. Phys. 124(1) (2010) 109-112.

[29] R.S. Meltzer et al., Effect of the matrix on the radiative lifetimes of rare earth doped nanoparticles embedded in matrices, J. Lumin. 94 (2001) 217-220.

[30] H.J. Eggert et al., High pressure refractive index measurements of 4: 1 methanol: ethanol, J. Appl. Phys. 72(6) (1992) 2453-2461.

[31] R.S. Meltzer et al., Dependence of fluorescence lifetimes of Y2O3: Eu3+ nanoparticles on the surrounding medium, Phys. Rev. B. 60(20) (1999) R14012.

DOI: 10.1103/physrevb.60.r14012

[32] R.E. Setchell, Index of refraction of shock-compressed fused silica and sapphire, J. Appl. Phys. 50(12) (1979) 8186-8192.

DOI: 10.1063/1.325959

[33] R.H. Rinkleff, F. Thorn, Tensor polarizabilities of the (nd+(n+1)s)32D3/2, 5/2 levels in Sc I, Y I, La I and Lu I. Zeitschrift für Physik D Atoms, Molecules and Clusters. 31(1) (1994) 31-36.

DOI: 10.1007/bf01426574

[34] M. Gauthier, A. Polian, J.M. Besson, Optical properties of gallium selenide under high pressure, Phys. Rev. B. 40(6) (1989) 3837.

DOI: 10.1103/physrevb.40.3837

[35] B.R. Jovanić et al., High pressure optical studies of LMA: Mn2+, Nd3+ and LMA: Mn2+, Opt. Mater. 30(7) (2008) 1070-1073.

[36] J. Schroeder, P.D. Persans, Spectroscopy of II–VI nanocrystals at high pressure and high temperature, J. Lumin. 70(1-6) (1996) 69-84.

DOI: 10.1016/0022-2313(96)00045-2

[37] R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides, J. Appl. Phys. 73(1) (1993) 348-366.

[38] R. Mittal et al., Investigation of the phase stability of LuVO4 at high pressure using powder x-ray diffraction measurements and lattice dynamical calculations, J. Phys.: Condens. Matter. 20(7) (2008) 075223.

[39] J. Shanker, S.C. Agrawal, O.P. Sarma, Variation of electronic polarizabilities and sizes of ions in crystals under hydrostatic pressure, J. Chem. Phys. 67(12) (1977) 5452-5455.

DOI: 10.1063/1.434766

[40] J. Shanker, M.P. Verma, Correlation between electronic polarizabilities and ionic radii in alkali halides, J. Phys. Chem. Solids. 37(9) (1976) 883-885.

DOI: 10.1016/0022-3697(76)90065-2

[41] K. Shirao et al., Refractive indexes and electronic polarizabilities of molten HoCl3–NaCl and HoCl3–KCl mixtures, Journal of Alloys and Compounds. 281(2) (1998) 163-168.

DOI: 10.1016/s0925-8388(98)00805-6

[42] C. Sun et al., The modulation of metal–insulator transition temperature of vanadium dioxide: a density functional theory study, J. Matter. Chem. C. 2(43) (2014) 9283-9293.

[43] E. Knittle, Static compression Measurements of Equations of State, in: Mineral Physics & Crystallography: A Handbook of Physical Constants, (ed T. J. Ahrens), American Geophysical Union, Washington, D.C., 1995, pp.98-142.

DOI: 10.1029/rf002p0098

[44] W.A. Grosshans, W.A. Holzapfel, Atomic volumes of rare-earth metals under pressures to 40 GPa and above, Phys. Rev. B. 45(10) (1992) 5171.

DOI: 10.1103/physrevb.45.5171

[45] C.K. Jayasankar et al., High-pressure luminescence study of Eu3+ in lithium borate glass, Phys. Rev. B. 69(21) (2004) 214108.

[46] B.R. Jovanić, B. Radenković, Lj.D. Zeković, Theoretical consideration of the pressure induced changing of fluorescence lifetime for Sm2+ 0-0 line (5D0→ 7F0 transition) in SrFCl, Solid. State. Commun. 104 (1997) 91.

DOI: 10.1016/s0038-1098(97)00293-7

[47] Y.R. Shen, K.L. Bray, W.B. Holtzapfel, Effect of temperature and pressure on radiative and nonradiative transitions of Sm2+ in SrFCl, J. Lumin. 72-74 (1997) 266-267.

DOI: 10.1016/s0022-2313(96)00392-4

[48] Y.R. Shen, K.L. Bray, Effect of pressure and temperature on 4f − 4f luminescence properties of Sm2+ ions in M FCl crystals (M= Ba, Sr, and Ca), Phys. Rev. B. 58(18) (1998) 11944.

DOI: 10.1103/physrevb.58.11944

[49] A.M. Babu et al., Spectroscopic and photoluminescence properties of Dy3+-doped lead tungsten tellurite glasses for laser materials, J. Alloys Comp. 509(2) (2011) 457-462.

DOI: 10.1016/j.jallcom.2010.09.058

[50] D.K. Williams, H. Yuan, M. Tissue, Size dependence of the luminescence spectra and dynamics of Eu3+: Y2O3 nanocrystals, J. Lumin. 83-84 (1999) 297-300.

DOI: 10.1016/s0022-2313(99)00114-3
Show More Hide