Subscribe

Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 75 > Pressure Effects on the Optical Properties of...
< Back to Volume

Pressure Effects on the Optical Properties of LuVO4:Eu3+ Nanoparticles

Full Text PDF

Abstract:

The effect of hydrostatic pressure (varying up to 110 kbar) at the room temperature on three lines at 594nm, 615nm and 619nm positions in emission spectra and fluorescence lifetime t of the Eu3+ for 0-2 line (5D07F2 transition) in LuVO4: Eu3+ nanoparticles was studied. The results showed that the increase of the pressure induced lines red shift towards longer wavelengths for all considered lines with different rate. Also, the fluorescence lifetime τ for 5D07F2 transition nonlinearly decreased with pressure in the considered pressure range. Line positions and fluorescence lifetime τ, were explained by a model which took into account the effect of high pressure on: refractive index of crystal; compression, polarizability of the crystal and individual ions. Satisfactory agreement between measured and theoretical predicted values with error less than 2% was obtained.

Info:

Periodical:
International Letters of Chemistry, Physics and Astronomy (Volume 75)
Pages:
1-10
Citation:
B. Jovanić et al., "Pressure Effects on the Optical Properties of LuVO4:Eu3+ Nanoparticles", International Letters of Chemistry, Physics and Astronomy, Vol. 75, pp. 1-10, 2017
Online since:
August 2017
Export:
Distribution:
References:

[1] X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev. 107(7) (2007) 2891-2959.

DOI: https://doi.org/10.1021/cr0500535

[2] S. He et al., A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis, Adv. Funct. Mater. 20(3) (2010) 453-459.

[3] J. Lee, S. Mahendra, P.J.J. Alvarez, Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations, ACS Nano. 4(7) (2010) 3580-3590.

DOI: https://doi.org/10.1021/nn100866w

[4] M.V. Yezhelyev et al., Emerging use of nanoparticles in diagnosis and treatment of breast cancer, Lancet Oncol. 7(8) (2006) 657-667.

[5] P. Wieacker, J. Steinhard, The prenatal diagnosis of genetic diseases, Dtsch Arztebl Int. 107(48) (2010) 857.

[6] B. Jovanić et al., Optical spectroscopy of nanocrystalline Gd3Ga5O12 doped with Eu3+ and high pressures, Mater. Chem. Phys. 132(2) (2012) 273-277.

DOI: https://doi.org/10.1016/j.matchemphys.2011.11.010

[7] A.H. Krumpel et al., Lanthanide 4f-level location in AVO4: Ln3+ (A= La, Gd, Lu) crystals, J. Phys.: Condens. Matter 21(11) (2009) 115503.

DOI: https://doi.org/10.1088/0953-8984/21/11/115503

[8] L. Lutterotti, S. Matthies, H. Wenk, MAUD: a friendly Java program for material analysis using diffraction, NewsLetter of the CPD. 21 (1999) 14-15.

[9] B.R. Jovanic, Lifetime of the ruby R1 line under ultrahigh pressure, Chem. Phys. Lett. 190(5) (1992) 440-442.

DOI: https://doi.org/10.1016/0009-2614(92)85169-b

[10] B. Lorenz, Y.R. Shen, W.B. Holzapfel, Characterization of the new luminescence pressure sensor SrFCl: Sm2+, International Journal of High Pressure Research. 12(2) (1994) 91-99.

DOI: https://doi.org/10.1080/08957959408203170

[11] B. Yan, X.Q. Su, LuVO4: RE3+ (RE= Sm, Eu, Dy, Er) phosphors by in-situ chemical precipitation construction of hybrid precursors, Optical Materials. 29(5) (2007) 547-551.

DOI: https://doi.org/10.1016/j.optmat.2005.08.050

[12] Z. Xu et al., Morphological control and luminescence properties of lanthanide orthovanadate LnVO4 (Ln= La to Lu) nano-/microcrystals via hydrothermal process, Cryst. Eng. Comm. 13(2) (2011) 474-482.

DOI: https://doi.org/10.1039/c0ce00161a

[13] B.R. Jovanić et al., Study of the high pressure effect on nanoparticles GdVO4: Eu3+ optical properties, Rad. Eff. Def. Solids. 170(7-8) (2015) 574-583.

[14] B.R. Jovanić et al., High-pressure optical studies of Y2O3: Eu3+ nanoparticles, Rad. Eff. Deff. Solids. 163(12) (2008) 925-931.

[15] S. Georgiescu et al., Effects of particle size on the luminescence of YVO4: Eu nanocrystals, Romanian Reports Phys. 60 (2008) 947-955.

[16] S.W. Allison, G.T. Gillies, Remote thermometry with thermographic phosphors: Instrumentation and applications, Rev. Sci. Instrum. 68(7) (1997) 2615-2650.

DOI: https://doi.org/10.1063/1.1148174

[17] B.R. Jovanić et al., High-pressure and optical properties of LaMgAl11O19: Sm3+ laser material, Rad. Eff. Def. Solids. 169(1) (2014) 48-56.

[18] C. Bungenstock, Th. Tröster, W.B. Holzapfel, Effect of pressure on free-ion and crystal-field parameters of Pr3+ in L OCl (L= La, Pr, Gd), Phys. Rev. B. 62(12) (2000) 7945.

DOI: https://doi.org/10.1103/physrevb.62.7945

[19] G. Huber, K. Syassen, W.B. Holzapfel, Pressure dependence of 4 f levels in europium pentaphosphate up to 400 kbar, Phys. Rev. B. 15(11) (1977) 5123.

DOI: https://doi.org/10.1103/physrevb.15.5123

[20] R. Praveena et al., Luminescence properties of Sm3+-doped P2O5–PbO–Nb2O5 glass under high pressure, J. Phys.: Condens. Matter. 21(3) (2008) 035108.

DOI: https://doi.org/10.1088/0953-8984/21/3/035108

[21] J.S. Bae et al., Crystalline and cathodoluminescent characteristics of Li-doped GdVO4: Eu3+ red phosphor powders, J. Korean Phys. Soc. 49(3) (2006) 860-864.

[22] C.K. Jayasankar et al., A fluorescence study of Tb3+ doped tellurite glass under pressure, J. Phys.: Condens. Matter. 16(39) (2004) 7007.

[23] G. Chen, J. Hölsä, J.R. Peterson, A luminescence study of single-crystal EuPO4 at high pressure, J. Chem. Phys. Solids. 58(12) (1997) 2031-(2037).

DOI: https://doi.org/10.1016/s0022-3697(97)00133-9

[24] D.P. Ma et al., Theoretical calculations of the R1 red shift of ruby under high pressure, Phys. Letter. A. 115(5) (1986) 245-248.

DOI: https://doi.org/10.1016/0375-9601(86)90475-5

[25] B.R. Jovanić et al., High-pressure optical studies of Y2O3: Eu3+ nanoparticles, Radiation Effects and Defects in Solids. 163 (2008) 925-931.

DOI: https://doi.org/10.1080/10420150802082705

[26] B.R. Jovanic, B. Radenkovic, Lj.D. Zekovic, The effect of pressure on the position and fluorescence lifetime for the 5D0→7F2 transition in Y1. 9Eu0. 1O3, J. Phys. Cond. Matt. 8(22) (1996) 4107.

[27] L. Yang et al., Size-induced variations in bulk/surface structures and their impact on photoluminescence properties of GdVO4: Eu3+ nanoparticles, Phys Chem Chem Phys. 14(28) (2012) 9956-9965.

DOI: https://doi.org/10.1039/c2cp41136a

[28] B.R. Jovanić et al., High-pressure optical studies of LMA: V2+, Mater. Chem. Phys. 124(1) (2010) 109-112.

[29] R.S. Meltzer et al., Effect of the matrix on the radiative lifetimes of rare earth doped nanoparticles embedded in matrices, J. Lumin. 94 (2001) 217-220.

[30] H.J. Eggert et al., High pressure refractive index measurements of 4: 1 methanol: ethanol, J. Appl. Phys. 72(6) (1992) 2453-2461.

[31] R.S. Meltzer et al., Dependence of fluorescence lifetimes of Y2O3: Eu3+ nanoparticles on the surrounding medium, Phys. Rev. B. 60(20) (1999) R14012.

DOI: https://doi.org/10.1103/physrevb.60.r14012

[32] R.E. Setchell, Index of refraction of shock-compressed fused silica and sapphire, J. Appl. Phys. 50(12) (1979) 8186-8192.

DOI: https://doi.org/10.1063/1.325959

[33] R.H. Rinkleff, F. Thorn, Tensor polarizabilities of the (nd+(n+1)s)32D3/2, 5/2 levels in Sc I, Y I, La I and Lu I. Zeitschrift für Physik D Atoms, Molecules and Clusters. 31(1) (1994) 31-36.

DOI: https://doi.org/10.1007/bf01426574

[34] M. Gauthier, A. Polian, J.M. Besson, Optical properties of gallium selenide under high pressure, Phys. Rev. B. 40(6) (1989) 3837.

DOI: https://doi.org/10.1103/physrevb.40.3837

[35] B.R. Jovanić et al., High pressure optical studies of LMA: Mn2+, Nd3+ and LMA: Mn2+, Opt. Mater. 30(7) (2008) 1070-1073.

[36] J. Schroeder, P.D. Persans, Spectroscopy of II–VI nanocrystals at high pressure and high temperature, J. Lumin. 70(1-6) (1996) 69-84.

DOI: https://doi.org/10.1016/0022-2313(96)00045-2

[37] R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides, J. Appl. Phys. 73(1) (1993) 348-366.

[38] R. Mittal et al., Investigation of the phase stability of LuVO4 at high pressure using powder x-ray diffraction measurements and lattice dynamical calculations, J. Phys.: Condens. Matter. 20(7) (2008) 075223.

[39] J. Shanker, S.C. Agrawal, O.P. Sarma, Variation of electronic polarizabilities and sizes of ions in crystals under hydrostatic pressure, J. Chem. Phys. 67(12) (1977) 5452-5455.

DOI: https://doi.org/10.1063/1.434766

[40] J. Shanker, M.P. Verma, Correlation between electronic polarizabilities and ionic radii in alkali halides, J. Phys. Chem. Solids. 37(9) (1976) 883-885.

DOI: https://doi.org/10.1016/0022-3697(76)90065-2

[41] K. Shirao et al., Refractive indexes and electronic polarizabilities of molten HoCl3–NaCl and HoCl3–KCl mixtures, Journal of Alloys and Compounds. 281(2) (1998) 163-168.

DOI: https://doi.org/10.1016/s0925-8388(98)00805-6

[42] C. Sun et al., The modulation of metal–insulator transition temperature of vanadium dioxide: a density functional theory study, J. Matter. Chem. C. 2(43) (2014) 9283-9293.

[43] E. Knittle, Static compression Measurements of Equations of State, in: Mineral Physics & Crystallography: A Handbook of Physical Constants, (ed T. J. Ahrens), American Geophysical Union, Washington, D.C., 1995, pp.98-142.

DOI: https://doi.org/10.1029/rf002p0098

[44] W.A. Grosshans, W.A. Holzapfel, Atomic volumes of rare-earth metals under pressures to 40 GPa and above, Phys. Rev. B. 45(10) (1992) 5171.

DOI: https://doi.org/10.1103/physrevb.45.5171

[45] C.K. Jayasankar et al., High-pressure luminescence study of Eu3+ in lithium borate glass, Phys. Rev. B. 69(21) (2004) 214108.

[46] B.R. Jovanić, B. Radenković, Lj.D. Zeković, Theoretical consideration of the pressure induced changing of fluorescence lifetime for Sm2+ 0-0 line (5D0→ 7F0 transition) in SrFCl, Solid. State. Commun. 104 (1997) 91.

DOI: https://doi.org/10.1016/s0038-1098(97)00293-7

[47] Y.R. Shen, K.L. Bray, W.B. Holtzapfel, Effect of temperature and pressure on radiative and nonradiative transitions of Sm2+ in SrFCl, J. Lumin. 72-74 (1997) 266-267.

DOI: https://doi.org/10.1016/s0022-2313(96)00392-4

[48] Y.R. Shen, K.L. Bray, Effect of pressure and temperature on 4f − 4f luminescence properties of Sm2+ ions in M FCl crystals (M= Ba, Sr, and Ca), Phys. Rev. B. 58(18) (1998) 11944.

DOI: https://doi.org/10.1103/physrevb.58.11944

[49] A.M. Babu et al., Spectroscopic and photoluminescence properties of Dy3+-doped lead tungsten tellurite glasses for laser materials, J. Alloys Comp. 509(2) (2011) 457-462.

DOI: https://doi.org/10.1016/j.jallcom.2010.09.058

[50] D.K. Williams, H. Yuan, M. Tissue, Size dependence of the luminescence spectra and dynamics of Eu3+: Y2O3 nanocrystals, J. Lumin. 83-84 (1999) 297-300.

DOI: https://doi.org/10.1016/s0022-2313(99)00114-3
Show More Hide
Cited By:

[1] D. Lanevski, K. Mauring, E. Tkaczyk, R. Jaaniso, "Optical differential temperature measurement with beat frequency phase fluorometry", Applied Optics, Vol. 57, p. 8053, 2018

DOI: https://doi.org/10.1364/AO.57.008053