This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] S. -H. Dong, G. -H. Sun, The Schrödinger equation with a Coulomb plus inverse-square potential in D dimensions, Physica Scripta. 70(2-3) (2004) 94–97.
DOI: https://doi.org/10.1088/0031-8949/70/2-3/004[2] D.L. Aronstein, C.R. Stroud, Jr., General series solution for finite square-well energy levels for use in wave-packet studies, Am. J. Phys. 68 (2000) 943–949.
DOI: https://doi.org/10.1119/1.1285868[3] L. Buragohain, S.A.S. Ahmed, Exactly solvable quantum mechanical systems generated from the anharmonic potentials, Lat. Am. J. Phys. Educ. 4(1) (2010) 79–83.
[4] R.J. Lombard, J. Mars, C. Volpe, Wave equations of energy dependent potentials for confined systems, Journal of Physics G: Nuclear and Particle Physics. 34 (2007) 1879–1888.
[5] K.J. Oyewumi, E.A. Bangudu, Isotropic harmonic oscillator plus inverse quadratic potential in N-dimensional space, The Arabian Journal for Science and Engineering. 28(2A) (2003) 173.
[6] M.M. Nieto, Hydrogen atom and relativistic pi-mesic atom in N-space dimension, Am. J. Phys. 47 (1979) 1067–1072.
DOI: https://doi.org/10.1119/1.11976[7] S.M. Ikhdair, R. Sever, Exact polynomial eigensolutions of the Schrödinger equation for the pseudoharmonic potential, Journal of Molecular Structure: THEOCHEM. 806(1) (2007) 155–158.
DOI: https://doi.org/10.1016/j.theochem.2006.11.019[8] A.S. Ahmed, L. Buragohain, Generation of new classes of exactly solvable potentials, Phys. Scr. 80 (2009) 1–6.
DOI: https://doi.org/10.1088/0031-8949/80/02/025004[9] S.K. Bose, Exact solution of non-relativistic Schrödinger equation for certain central physical potentials, Nouvo Cimento B. 113 (1996) 299–328.
[10] G.P. Flesses, A. Watt, An exact solution of the Schrödinger equation for a multiterm potential, J. Phys. A: Math. Gen. 14 (1981) L315–L318.
DOI: https://doi.org/10.1088/0305-4470/14/9/001[11] M. Yildiz, Energy levels and atomic lifetimes of Rydberg states in neutral Indium, Acta Physica Polonica A. 123(1) (2013) 25–30.
DOI: https://doi.org/10.12693/aphyspola.123.25[12] S.H. Dong, Schrödinger equation with the potential V(r) =Ar−4+Br−3+Cr−2+Dr−1, Physica Scripta. 64(4) (2001) 273–276.
[13] D. Mikulski et al., Exact solution of the Schrödinger equation with a new expansion of anharmonic potential with the use of the supersymmetric quantum mechanics and factorization method, J. Math. Chem. 53 (2015) 2018–(2027).
DOI: https://doi.org/10.1007/s10910-015-0532-4[14] S.H. Dong, A new approach to the relativistic Schrödinger equation with central potential: Ansatz method, International Journal of Theoretical Physics. 40(2) (2001) 559–567.
[15] A.A. Rajabi, M. Hamzavi et al., A new Coulomb ring-shaped potential via generalized parametetric Nikivforov-Uvarov method, Journal of Theoretical and Applied Physics. 7(1) (2013) 1–15.
[16] B. Biswas, S. Debnath, Bound states for pseudoharmonic potential of the Dirac equation with spin and pseudo-spin symmetry via Laplace transform approach, Acta Physica Polonica A. 130(3) (2016) 692–696.
DOI: https://doi.org/10.12693/aphyspola.130.692[17] S. -H. Dong, G. -H. San, Quantum spectrum of some anharmonic central potentials: wave functions ansatz, Foundations of Physics Letters. 16(4) (2003) 357–367.
[18] L. Buragohain, S.A.S. Ahmed, Exactly solvable quantum mechanical systems generated from the anharmonic potentials, Lat. Am. J. Phys. Educ. 4(1) (2010) 79-83.
[19] S.M. Ikhdair, Exact solution of Dirac equation with charged harmonic oscillator in electric field: bound states, Journal of Modern Physics. 3(2) (2012) 170–179.
DOI: https://doi.org/10.4236/jmp.2012.32023[20] Zhang Tian-Yi, Zheng Neng-Wu, Theoretical study of energy levels and transition probabilities of boron atom, Acta Physica Polonica A. 116(2) (2009) 141–153.
DOI: https://doi.org/10.12693/aphyspola.116.141[21] H. Hassanabadi et al., Exact solutions of N-dimensional Schrödinger equation for a potential containing coulomb and quadratic terms, International Journal of the Physical Sciences. 6(3) (2011) 583–586.
[22] S. -H. Dong, Z. -Q. Ma, G. Esposito, Exact solutions of the Schrödinger equation with inverse-power potential, Foundations of Physics Letters. 12(5) (1999) 465–473.
[23] D. Agboola, Complete analytical solutions of the Mie-Type potentials in N-dimensions, Acta Physica Polonica A. 120 (2011) 371–377.
DOI: https://doi.org/10.12693/aphyspola.120.371[24] D. Shi-Hai, Exact solutions of the two-dimensional Schrödinger equation with certain central potentials, Int. J. Theor. Phys. 39 (2000) 1119–1128.
[25] B.I. Ita, Solutions of the Schrödinger equation with inversely quadratic Hellmann plus Mie-type potential using Nikiforov-Uvarov method, International Journal of Recent Advances in Physics. 2(4) (2013).
DOI: https://doi.org/10.1063/1.4902294[26] P. Gupta, I. Mehrotra, Study of heavy quarkonium with energy dependent potential, Journal of Modern Physics. 3 (2012) 1530–1536.
DOI: https://doi.org/10.4236/jmp.2012.310189[27] B.I. Ita, A.I. Ikeuba, A.N. Ikot, Solutions of the Schrödinger equation with quantum mechanical gravitational potential plus harmonic oscillator potential, Commun. Theor. Phys. 61(2) (2014) 149.
DOI: https://doi.org/10.1088/0253-6102/61/2/01[28] A. Ghoshal, Y.K. Ho, Ground states of helium in exponential-cosine-screened Coulomb potentials, Journal of Physics B: Atomic, Molecular and Optical Physics. 42(7) (2009).
DOI: https://doi.org/10.1088/0953-4075/42/7/075002[29] S.M. Kuchin, N.V. Maksimenko, Theoretical estimations of the spin-averaged mass spectra of heavy quarkonia and Bc mesons, Universal Journal of Physics and Applications. 1(3) (2013) 295–298.
[30] H. Egrifes, D. Demirhan, F. Buyukkilic, Exact solutions of the Schrödinger equation for the deformed hyperbolic potential well and the deformed four-parameter exponential type potential, Phys. Lett. A. 275 (2000) 229.
DOI: https://doi.org/10.1016/s0375-9601(00)00592-2[31] V.C. Aguilera-Navarro, E. Ley-Koo, S. Mateos-Cortés, Vibrational–rotational analysis of supersingular plus quadratic potential , Int. J. Theor. Phys. 40(10) (2001) 157–166.
DOI: https://doi.org/10.1007/bf02435778[32] V.C. Aguilera-Navarro, E. Ley-Koo, S. Mateos-Cortés, Vibrational–rotational structure of supersingular plus Coulomb potential , Int. J. Theor. Phys. 36(01) (1997) 1809–1816.
DOI: https://doi.org/10.1007/bf02435778[33] H. Snyder, The Quantization of space time, Phys. Rev. 71 (1946) 38–41.
[34] A. Maireche, Spectrum of hydrogen atom ground state counting quadratic term in Schrödinger equation, Afr. Rev Phys. 10 (2015) 177–183.
[35] A. Maireche, Deformed bound states for central fraction power potential: non relativistic Schrödinger equation, Afr. Rev Phys. 10 (2015) 97–103.
[36] A. Maireche, Spectrum of Schrödinger equation with H.L.C. potential in non-commutative two-dimensional real space, Afr. Rev Phys. 9 (2014) 479–485.
[37] A. Maireche, A study of Schrödinger equation with inverse sextic potential in 2-dimensional non-commutative space, Afr. Rev Phys. 9 (2014) 185–193.
[38] A. Maireche, A complete analytical solution of the Mie-type potentials in non-commutative 3-dimensional spaces and phases symmetries, Afr. Rev Phys. 11 (2016) 111–117.
[39] A. Maireche, Atomic spectrum for Schrödinger equation with rational spherical type potential in non-commutative space and phase, Afr. Rev Phys. 10 (2016) 373–381.
[40] A. Maireche, Nonrelativistic atomic spectrum for companied harmonic oscillator potential and its inverse in both NC-2D: RSP, International Letters of Chemistry, Physics and Astronomy. 56 (2015) 1–9.
DOI: https://doi.org/10.18052/www.scipress.com/ilcpa.56.1[41] A. Maireche, New exact solution of the bound states for the potential family V(r)=A/r2-B/r+Crk (k=0, -1, -2) in both noncommutative three dimensional spaces and phases: non relativistic quantum mechanics, International Letters of Chemistry, Physics and Astronomy. 58 (2015).
DOI: https://doi.org/10.18052/www.scipress.com/ilcpa.58.164[42] A. Maireche, A new approach to the non relativistic Schrödinger equation for an energy-depended potential in both noncommutative three dimensional spaces and phases, International Letters of Chemistry, Physics and Astronomy. 60 (2015) 11–19.
DOI: https://doi.org/10.18052/www.scipress.com/ilcpa.60.11[43] A. Maireche, A new study to the Schrödinger equation for modified potential in nonrelativistic three dimensional real spaces and phases, International Letters of Chemistry, Physics and Astronomy. 61 (2015) 38–48.
DOI: https://doi.org/10.18052/www.scipress.com/ilcpa.61.38[44] A. Maireche, A new nonrelativistic investigation for the lowest excitations states of interactions in one-electron atoms, Muonic, Hadronic and Rydberg atoms with modified inverse power potential, International Frontier Science Letters. 9 (2016).
DOI: https://doi.org/10.18052/www.scipress.com/ifsl.9.33[45] A. Maireche, Deformed quantum energy spectra with mixed harmonic potential for nonrelativistic Schrödinger equation, J. Nano- Electron. Phys. 7(2) (2015) 02003-1 – 02003-6.
[46] A. Maireche, A Recent study of quantum atomic spectrum of the lowest excitations for Schrödinger equation with typical rational spherical potential at Planck's and nanoscales, J. Nano- Electron. Phys. 7(3) (2015) 03047-1 – 03047-7.
[47] A. Maireche, Quantum Hamiltonian and spectrum of Schrödinger equation with companied harmonic oscillator potential and its inverse in three dimensional noncommutative real space and phase, J. Nano- Electron. Phys. 7(4) (2015) 04021-104021-7.
[48] A. Maireche, New relativistic atomic mass spectra of quark (u, d and s) for extended modified Cornell potential in nano and Plank's scales, J. Nano- Electron. Phys. 8(1) (2016) 01020-1 – 01020-7.
DOI: https://doi.org/10.21272/jnep.8(1).01020[49] A. Maireche, The nonrelativistic ground state energy spectra of potential counting Coulomb and quadratic terms in non-commutative two dimensional real spaces and phases, J. Nano- Electron. Phys. 8(1) (2016) 01021-1 – 01021-6.
DOI: https://doi.org/10.21272/jnep.8(1).01021[50] A. Maireche, New theoretical study of quantum atomic energy spectra for lowest excited states of central (PIHOIQ) potential in noncommutative spaces and phases symmetries at Plan's and nanoscales, J. Nano- Electron. Phys. 8(2) (2016).
DOI: https://doi.org/10.21272/jnep.8(2).02027[51] A. Maireche, A new nonrelativistic atomic energy spectrum of energy dependent potential for heavy quarkouniom in noncommutative spaces and phases symmetries, J. Nano- Electron. Phys. 8(2) (2016) 02046-1 – 02046-6.
DOI: https://doi.org/10.21272/jnep.8(2).02046[52] A. Maireche, New exact bound states solutions for (C.F.P.S. ) potential in the case of non-commutative three dimensional non relativistic quantum mechanics, Med. J. Model. Simul. 04 (2015) 060–072.
[53] A. Maireche, New bound state energies for spherical quantum dots in presence of a confining potential model at nano and Plank's scales. NanoWorld J. 1(4) (2016) 122–129.
DOI: https://doi.org/10.17756/nwj.2016-016[54] A. Maireche, Quantum Schrödinger equation with Octic potential in non-commutative two-dimensional complex space, Life Sci. J. 11(6) (2014) 353–359.
[55] A. Maireche, New quantum atomic spectrum of Schrödinger equation with pseudo harmonic potential in both noncommutative three dimensional spaces and phases, Lat. Am. J. Phys. Educ. 9(1) (2015) 1301.
[56] A.E.F. Djemei, H. Smail, On quantum mechanics on noncommutative quantum phase space, Commun. Theor. Phys. 41 (2004) 837–844.
DOI: https://doi.org/10.1088/0253-6102/41/6/837[57] S. Cai et al., Dirac oscillator in noncommutative phase space, Int. J. Theor. Phys. 49(8) (2010) 1699–1705.
[58] J. Lee, Star products and the Landau problem, Journal of the Korean Physical Society. 47(4) (2005) 571–576.
[59] A. Jahan, Noncommutative harmonic oscillator at finite temperature: a path integral approach, Brazilian Journal of Physics. 37(4) (2007) 144–146.
DOI: https://doi.org/10.1590/s0103-97332008000100026[60] A.F. Dossa, G.Y.H. Avossevou, Noncommutative phase space and the two dimensional quantum dipole in background electric and magnetic fields, Journal of Modern Physics. 4 (2013) 1400–1411.
DOI: https://doi.org/10.4236/jmp.2013.410168[61] Z. -H. Yang et al., DKP oscillator with spin-0 in three dimensional noncommutaive phase space, Int. J. Theor. Phys. 49 (2010) 644–657.
[62] Y. Yuan et al., Spin ½ relativistic particle in a magnetic field in NC phase space, Chinese Physics C. 34(5) (2010) 543.
[63] J. Mamat, S. Dulat, H. Mamatabdulla, Landau-like atomic problem on a non-commutative phase space, Int. J. Theor. Phys. 55 (2016) 2913–2918.
DOI: https://doi.org/10.1007/s10773-016-2922-1[64] B. Mirza et al., Relativistic oscillators in a noncommutative space in a magnetic field, Commun. Theor. Phys. 55 (2011) 405–409.
DOI: https://doi.org/10.1088/0253-6102/55/3/06[65] Y. Xiao; Z. Long, S. Cai, Klein-Gordon oscillator in noncommutative phase space under a uniform magnetic field, Int. J. Theor. Phys. 50 (2011) 3105–3111.
DOI: https://doi.org/10.1007/s10773-011-0811-1[66] A.E.F. Djemaï, H. Smail, On quantum mechanics on noncommutative quantum phase space, Commun. Theor. Phys. 41 (2004) 837.
DOI: https://doi.org/10.1088/0253-6102/41/6/837[67] A. Al-Jamel, Heavy quarkonia with Cornell potential on noncommutative space, Journal of Theoretical and Applied Physics. 5(1) (2011) 21–24.
[68] I.S. Gradshteyn, I.M. Ryzhik, Table of integrals, Series and Products, 7th. ed., Elsevier, (2007).
[1] A. Maireche, "Effects of Two-Dimensional Noncommutative Theories on Bound States Schrödinger Diatomic Molecules under New Modified Kratzer-Type Interactions", International Letters of Chemistry, Physics and Astronomy, Vol. 76, p. 1, 2017
DOI: https://doi.org/10.18052/www.scipress.com/ILCPA.76.1[2] O. Hegacy, "Model for End-Stage Liver Disease (Meld) Score, As a Prognostic Factor for Cirrhotic Patients, Undergoing Hepatectomy for Hepatocellular Carcinoma", Gastroenterology & Hepatology : Open Access, Vol. 2, 2015
DOI: https://doi.org/10.15406/ghoa.2015.02.00044[3] A. Maireche, "The Klein–Gordon equation with modified Coulomb plus inverse-square potential in the noncommutative three-dimensional space", Modern Physics Letters A, p. 2050015, 2019
DOI: https://doi.org/10.1142/S0217732320500157[4] A. Maireche, "A New Approach to the Approximate Analytic Solution of the Three-Dimensional Schrӧdinger Equation for Hydrogenic and Neutral Atoms in the Generalized Hellmann Potential Model", Ukrainian Journal of Physics, Vol. 65, p. 987, 2020
DOI: https://doi.org/10.15407/ujpe65.11.987