Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 72 > Photophysics of Caffeic, Ferulic and Sinapic Acids...
< Back to Volume

Photophysics of Caffeic, Ferulic and Sinapic Acids with α- and β-Cyclodextrins: Spectral and Molecular Modeling Studies

Full Text PDF


Encapsulation of caffeic acid (CAA), ferulic acid (FEA) and sinapic acid (SIA) molecules with α-CD and β-CD was studied by UV-visible, fluorescence, time-resolved fluorescence and molecular modelling techniques. This analysis reports the probing of cyclodextrin (CD) cavities with the help of dual emission properties of the above hydroxycinnamic acids (HCAs) in aqueous solution. The normal Stokes shifted bands originated from the locally excited state and the large Stokes shifted bands due to the emission from an intramolecular charge transfer (ICT) state were observed. The ratio of the TICT emission to the normal emission increased with α-CD and β-CD concentration. CD studies indicates (i) HCAs forms 1:1 inclusion complex and (ii) acrylic group present in the interior part of the CD cavity and OH/OCH3 groups present in the upper part of the CD cavity. pH studies suggest proton transfer reactions follow the same trend in these molecules. A mechanism is proposed to explain the inclusion process. PM3 optimizations were also carried out to assign the encapsulation of the HCA molecules.


International Letters of Chemistry, Physics and Astronomy (Volume 72)
N. Rajendiran et al., "Photophysics of Caffeic, Ferulic and Sinapic Acids with α- and β-Cyclodextrins: Spectral and Molecular Modeling Studies", International Letters of Chemistry, Physics and Astronomy, Vol. 72, pp. 37-51, 2017
Online since:
Jan 2017

[1] M.J. Jenita, T. Mohandoss, N. Rajendiran, Spectral and molecular modeling studies on hydroxy benzaldehydes with native and modified Cyclodextrins, J. Fluores. 24 (2014) 695-707.

DOI: 10.1007/s10895-013-1340-5

[2] N. Rajendiran, R.K. Sankaranarayanan, Nanoscale self assembly of cyclodextrin capped 4-aminobenzophenone via non-covalent interactions, J. Mol. Liq. 206 (2015) 218-227.

DOI: 10.1016/j.molliq.2015.02.023

[3] N. Rajendiran, R.K. Sankaranarayanan, J. Saravanan, Nanochain and vesicles formed by inclusion complexation of 4, 4'-diaminobenzanilide with Cyclodextrins, J. Exper. Nanosciec. 10 (2015) 880-899.

DOI: 10.1080/17458080.2014.930523

[4] N. Rajendiran, G. Venkatesh, R. K . Sankaranarayanan, Dual fluorescence of omeprazole: Effect of solvents and pH, Phys. Chem. Liq. 52 (2014) 738-750.

DOI: 10.1080/00319104.2014.924379

[5] S. Kovendhan, G. Venkatesh, N. Rajendiran, Intramolecular charge transfer effects on 3, 5-diaminobenzoic acid – Effect of solvents, pH and β-CD, J. Ind. Chem. Society. 91 (2014) 695-704.

[6] M. Jude Jenita et al., TICT effects on fast violet B and fast blue RR: Effect of HP-α-CD and HP-β-CDs, J. Molecular Liquids. 178 (2013) 160-167.

DOI: 10.1016/j.molliq.2012.11.033

[7] T. Mohandoss, J. Thulasidhasan, Dual Fluorescence of 4, 4'-sulfonyldiphenol, 3, 3'–dimethyl 4, 4'-sulfonyldiphenol, 4, 4'-sulfonyldibenzoic acid: Effects of cyclodextrin complexation, Canadian Chemical Transactions. 3 (2015) 319-332.

DOI: 10.13179/canchemtrans.2015.03.02.0225

[8] S. Panja, S. Chakravorti, Photophysics of 4-(N, N-dimethylamino)cinnamaldehyde/α-cyclodextrin inclusion complex, Spectrochimica Acta Part A. 58 (2002) 113-122.

DOI: 10.1016/s1386-1425(01)00522-4

[9] P.R. Bangal, S. Panja, S. Chakravorti, Excited state photodynamics of 4-N, N-dimethylamino cinnamaldehyde: A solvent dependent competition of TICT and intermolecular hydrogen bonding, J. Photochem. Photobiol. A Chem. 139 (2001) 5-16.

DOI: 10.1016/s1010-6030(00)00423-8

[10] S. Panja, P.R. Bangal, S. Chakravorti, Modulation of photophysics due to orientational selectivity of 4-N, N-dimethylamino cinnamaldehyde β-cyclodextrin inclusion complex in different solvents, Chem. Phys. Lett. 329 (2000) 377-385.

DOI: 10.1016/s0009-2614(00)01053-8

[11] S. Panja, S. Chakravorti, Dynamics of twisted intramolecular charge transfer process of 4-N, N-dimethylaminocinnamic acid in α-cyclodextrin environment, Chem. Phys. Lett. 336 (2001) 57-64.

DOI: 10.1016/s0009-2614(01)00115-4

[12] S. Hamai, K. Hari, 1H-NMR Study on Inclusion Modes of 2-Chloronaphthalene and α-Cyclodextrin in D2, Supramol. Chem. 10 (1998) 43-48.

DOI: 10.1080/10610279808054982

[13] A. Nag, K. Bhattacharya, Dual luminescence of dimethylaminobenzonitrile in γ-cyclodextrin. Environmental effects on twisted intramolecular charge-transfer phenomenon, J. Chem. Soc. Faraday Trans. 86 (1990) 53-54.

DOI: 10.1039/ft9908600053

[14] S. Li, W.C. Purdy, Cyclodextrins and their applications in analytical chemistry, Chem. Rev. 92 (1992) 1457-1462.

[15] K.A. Al-Hassan, The role of α-cyclodextrin cavity size on the fluorescence of 4-diethylaminobenzonitrile aqueous solution, Chem. Phys. Lett. 227 (1994) 527-532.

DOI: 10.1016/0009-2614(94)00853-1

[16] Y. Matsushita, T. Hikida, TICT state formation in the 4'-dimethylaminoacetophenone–α-cyclodexdtrin inclusion complex, Chem. Phys. Lett. 290 (1998) 349-354.

DOI: 10.1016/s0009-2614(98)00507-7

[17] Y.P. Sun, M.A. Fox, K.P. Johnston, Spectroscopic studies of p-(N, N-dimethylamino) benzonitrile and ethyl p-(N, N-dimethylamino) benzoate in supercritical trifluoromethane, carbon dioxide, and ethane, J. Am. Chem. Soc. 114 (1992) 1187-1192.

DOI: 10.1021/ja00030a010

[18] Y.H. Kim et al., Observation of hydrogen-bonding effects on twisted intramolecular charge transfer of p-(N, N-diethylamino)benzoic acid in aqueous cyclodextrin solution, J. Phys. Chem. 100 (1996) 15670-15676.

DOI: 10.1021/jp9613652

[19] K.S. Gould et al., Functional role of anthocyanins in the leaves of Quintinia serrata A. Cunn, J. Experimental Botany. 51 (2000) 1107-1115.

DOI: 10.1093/jexbot/51.347.1107

[20] M.R. Olthof et al., Chlorogenic acid and caffeic acid are absorbed in humans, J. Nutr. 131 (2001) 66-71.

[21] N.R. Prasad et al., Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line, Mol. Cell. Biochem. 349 (2011) 11-19.

DOI: 10.1007/s11010-010-0655-7

[22] M. Hirose et al., Carcinogenicity of antioxidants BHA, caffeic acid, sesamol, 4-methoxyphenol and catechol at low doses, either alone or in combination, and modulation of their effects in a rat medium-term multi-organ carcinogenesis model, Carcinogenesis. 19 (1998).

DOI: 10.1093/carcin/19.1.207

[23] L. Elmarie van der Watt, J.C. Pretorius, Purification and identification of active antibacterial components in Carpobrotus edulis L, J. Ethnopharmacology. 76 (2001) 87-91.

DOI: 10.1016/s0378-8741(01)00197-0

[24] B. Ibtissem, C. Abdelly, S. Sfar, Antioxidant and antibacterial properties, Adv. Chem. Engin. Science. 2 (2012) 359-365.

[25] M.G. Pierre, M. Carole, Effect of wheat variety, farming site, and bread‐baking on total phenolics, Int. J. Food Science and Technology. 41 (2006) 329-332.

DOI: 10.1111/j.1365-2621.2005.01057.x

[26] N. Rajendiran, M.J. Jenita, Encapsulation of 4-hydroxy-3-methoxy benzoic acid and 4-hydroxy-3, 5-dimethoxy benzoic acid by native and modified Cyclodextrins, Spectrochimica Acta. 136 (2015) 1349–1357.

DOI: 10.1016/j.saa.2014.09.139

[27] M.J. Jenita, A.A.M. Prabhu, N. Rajendiran, Encapsulation of 3, 5-dihydroxybenzoic acid and 3, 4, 5-trihydroxybenzoic acid by α- and β-cyclodextrins: Spectral and theoretical studies, J. Indian Chem. Soc. 91 (2014) 1711-1730.

[28] A.A.M. Prabhu, N. Rajendiran, Encapsulation of labetalol, and pseudoephedrine in β-CD cavity: Spectral and molecular modeling studies, J. Fluorescence. 22 (2012) 1461-1474.

DOI: 10.1007/s10895-012-1083-8

[29] R.K. Sankaranarayanan et al., Inclusion complexation of 3, 4, 5-trihydroxybenzoic acid with β-CD at different pH, J. Inclusion Phenomena and Macrocyclic Chemistry. 67 (2010) 461-470.

DOI: 10.1007/s10847-009-9729-0

[30] RN. Rajendiran, T. Balasubramanian, Intramolecular charge transfer effects on 4-hydroxy-3-methoxy benzaldehyde, Spectrochimica Acta A. 69 (2008) 822–829.

DOI: 10.1016/j.saa.2007.04.035

[31] T. Stalin et al., A study on inclusion complex of 1, 2, 3-trihydroxybenzene with α- and β-CD, Indian J. Chemistry. 45 (2006) 1113–1120.

[32] H.A. Benesi, J. Hildebrand, A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons, J. Am. Chem. Soc. 71 (1949) 2703-2707.

DOI: 10.1021/ja01176a030

[33] Y.B. Jiang, X.J. Wang, Stoichiometric-dependent intramolecular charge transfer flourescence of p-dimethylaminochalcone in β-cyclodextrin host—guest systems, J. Photochem. Photobiol. A Chem. 81 (1994) 205-209.

DOI: 10.1016/1010-6030(94)03786-8

[34] M.R. Guzzo et al., Study of the complexation of fisetin with cyclodextrins, J. Phys. Chem. A. 110 (2006) 10545-10551.

[35] S. Chaudhuri, S. Chakraborty, P.K. Sengupta, Encapsulation of serotonin in β-cyclodextrin nano-cavities: Fluorescence spectroscopic and molecular modeling studies, J. Mol. Struct. 975 (2010) 160.

DOI: 10.1016/j.molstruc.2010.04.014

[36] En-Cui Yang et al., Semi-empirical PM3 study upon the complexation of β-cyclodextrin with 4, 4'-benzidine and o-tolidine, J. Mol. Struct. Theochem. 712 (2004) 75-79.

DOI: 10.1016/j.theochem.2004.08.045

[37] M. Karelson, V.S. Lobanov, R. Katritzky, Quantum-Chemical Descriptors in QSAR/QSPR Studies, Chem. Rev. 96 (1996) 1027-1044.

DOI: 10.1021/cr950202r

[38] W. Saenger, Cyclodextrin inclusion compounds in research and industry, Angew Chem. Int. Ed. Engl. 19 (1980)344 -362.

DOI: 10.1002/anie.198003441

[39] C. Yan et al., A quantum-mechanical study on the complexation of β-cyclodextrin with quercetin, J. Mol. Struct. Theochem. 764 (2006)95-100.

[40] K. Linderner, W. Saenger, Crystal and molecular structure of cyclohepta-amylose dodecahydrate, Carbohydr. Res. 99 (1982) 103-115.

DOI: 10.1016/s0008-6215(00)81901-1

[41] T. Steiner, G. Koellner, Crystalline beta-cyclodextrin hydrate at various humidities: fast, continuous, and reversible dehydration studied by X-ray diffraction, J. Am. Chem. Soc. 116 (1994) 5122-5128.

DOI: 10.1021/ja00091a014

[42] T. Heine et al., Structure and dynamics of β-cyclodextrin in aqueous solution at the density-functional tight binding level, J. Phys. Chem A. 111 (2007) 5648 -5655.

[43] M.V. Rekharsky, Y. Inoue, Complexation thermodynamics of Cyclodextrins, Chem. Rev. 98 (1998) 1875-(1918).

DOI: 10.1021/cr970015o
Show More Hide