Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > ILCPA Volume 70 > A Novel and Efficient Synthesis of...
< Back to Volume

A Novel and Efficient Synthesis of [1,2,3]-Triazolyl Substituted Benzo[c]Coumarins and Evaluation of their Antimicrobial Activity

Full Text PDF


A series of novel [1,2,3]-triazolyl substituted benzo [c] coumarins have been synthesized by reacting various 3-coumarinoyl methyl pyridinium bromide salts with 1-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl) ethanones in the presence of sodium acetate in refluxing acetic acid. The structures of the synthesized compounds have been elucidated by IR, 1H-NMR, 13C-NMR and Mass spectral data. All the synthesized compounds have been screened for their in vitro anti-bacterial and anti-fungal activities. Some of the compounds have been found to be active against some bacterial and fungal pathogens compared to standard drugs.


International Letters of Chemistry, Physics and Astronomy (Volume 70)
N. N. Gohil et al., "A Novel and Efficient Synthesis of [1,2,3]-Triazolyl Substituted Benzo[c]Coumarins and Evaluation of their Antimicrobial Activity", International Letters of Chemistry, Physics and Astronomy, Vol. 70, pp. 1-11, 2016
Online since:
September 2016

[1] J. Lou et al., Metabolites from Alternaria fungi and their bioactivities, Molecules. 18 (2013) 5891-5935.

[2] Y. Shirataki, S. Toda, Anti-oxidative effects of dibenzo-α-pyrones in fruits of Trapa natans on lipid peroxidation, Nat. Med. 55 (2001) 247-250.

[3] D. Liang et al, Lysilactones A-C, three 6H-dibenzo[b, d]pyran-6-one glycosides from Lysimachia clethroides, total synthesis of lysilactone A, Tetrahedron. 69 (2013) 2093-(2097).

[4] S. Ghosal, J. Reddy, V. Lai, Shilajit I: Chemical Constituents, J. Pharm. Sci. 65(5) (1976) 772-773.

[5] S.J. Jeong et al, Hyaluronidase inhibitory active 6H-dibenzo[b, d]pyran-6-ones from the feces of Trogopterus xanthipes, Planta Med. 66(1) (2000) 76-77.

[6] K. Koch et al., Total Synthesis of Alternariol, J. Org. Chem. 70(8) (2005) 3275-3276.

[7] C. Tamm, Homoisoflavones, a new series of natural products, Arzneim. -Forsch. 22(10) (1972) 1776-1784.

[8] R.W. Pero, D. Harvan, M.C. Blois, Isolation of the toxin, altenuisol, from the fungus, alternariatenuis auct, Tetrahedron Lett. 14(12) (1973) 945-948.

[9] S. Madan, C.H. Cheng, Nickel-Catalyzed Synthesis of Benzocoumarins: Application to the Total Synthesis of Arnottin I, J. Org. Chem. 71(21) (2006) 8312-8315.

[10] A.D. Patten, N.H. Nguyen, S.J. Danishefsky, Concise Total Synthesis of Defucogilvocarcin V, J. Org. Chem. 53(5) (1988) 1003-1007.

[11] J.P. Edwards et al., 5-Aryl-1, 2- dihydro-5H-chromeno[3, 4-f]quinolines as potent, orally active, nonsteroidal progesterone receptor agonists: The effect of D-ring substituents, J. Med. Chem. 41 (1998) 303-310.

[12] L.G. Hamann et al, Synthesis and biological activity of a novel series of nonsteroidal, peripherally selective androgen receptor antagonists derived from 1, 2-dihydropyridono[5, 6-g]quinolones, J. Med. Chem. 41 (4) (1998) 623-639.

[13] M.J. Coghlan et al, Synthesis and characterization of non-steroidal ligands for the glucocorticoid receptor: Selective quinoline derivatives with prednisolone-equivalent functional activity, J. Med. Chem. 44(18) (2001) 2879-2885.

[14] J.M. Schmidt et al, Synthesis and evaluation of a novel nonsteroidal-specific endothelial cell proliferation inhibitor, J. Med. Chem. 46 (2003) 1289-1292.

[15] K.V. Sashidhara et al, Novel coumarin derivatives as potential antidyslipidemic agents, Biorg. Med. Chem. Lett. 20 (2010) 4248-4251.

[16] M. Morimoto et al., Gilvocarcins, new antitumor antibiotics 3. Antitumor activity, J. Antibiot. 34 (1981) 701-707.

[17] F. Tomita, K. Takahashi, T. Tamaoki, Gilvocarcins, new antitumor antibiotics 4. Mode of action, J. Antibiot. 35(8) (1982) 1038-1041.

[18] H. Nakashima et al, Inhibition of human immunodeficiency viral replication by tannins and related compounds, Anti-Viral Res. 18(1) (1992) 91-103.

[19] T. Okuda, K. Mori, H. Hayatsu, Inhibitory Effect of Tannins on Direct-acting Mutagens, Chem. Pharm. Bull. 32 (1984) 3755-3758.

[20] Z. Qiu et al, In vitro antioxidant and antiproliferative effects of ellagic acid and its colonic metabolite, urolithins, on human bladder cancer T24 cells, Food Chem. Toxicol. 59 (2013) 428-437.

[21] M. Sakurai et al., TMC-264, a novel anti-allergic heptaketide produced by the fungus phoma sp. TC 1674, Org. Letters. 5(7) (2003) 1083-1085.

[22] A.H. Aly et al., Cytotoxic metabolites from the fungal endophyte Alternaria sp. and their subsequent detection in its host plant Polygonum senegalense, J. Nat. Prod. 71(6) (2008) 972-980.

[23] E. Hormazabal et al., Metabolites from Microsphaeropsis olivacea, an Endophytic Fungus of Pilgerodendron uviferum, Zeitschrift für Naturforschung C. 60(1-2) (2005) 11-21.

[24] Y.C. Song et al., Characterization of Graphislactone A as the Antioxidant and Free Radical-Scavenging Substance from the Culture of Cephalosporium sp. IFB-E001, an Endophytic Fungus in Trachelospermum jasminoides, Biol. Pharm. Bull. 28(3) (2005).

[25] P. Langer, N.N.R. Saleh, B. Appel, Domino Reactions of 1, 3-Bis-Silyl Enol Ethers with Benzopyrylium Triflates Efficient Synthesis of Fluorescent 6H-Benzo[c]chromen-6-ones, Dibenzo[c, d]chromen-6-ones, and 2, 3-Dihydro-1H-4, 6-dioxachrysen-5-ones, Chem. Eur. J. 12 (2006).

[26] B.I. Alo et al., Sequential directed ortho metalation-boronic acid cross-coupling reactions. A general regiospecific route to oxygenated dibenzo[b, d]pyran-6-ones Related to Ellagic Acid, J. Org. Chem. 56(12) (1991) 3763-3768.

[27] M.S. Tremblay, D. Sames, A New Fluorogenic Transformation:  Development of an Optical Probe for Coenzyme Q, Org. Lett. 7(12) (2005) 2417-2420.

[28] R. Alvarez et al., 1, 2, 3-Triazole-[2, 5-Bis-O-(tert-butyldimethylsilyl)-. beta. -D-ribofuranosyl]-3'-spiro-5"-(4'-amino-l", 2"-oxathiole2", 2', -dioxide)(TSAO)Analogues: Synthesis and Anti-HIV-1 Activity, J Med Chem. 37(24) (1994) 4185-4194.

[29] M.J. Genin et al., Substituent Effects on the Antibacterial Activity of Nitrogen−Carbon- Linked (Azolylphenyl)oxazolidinones with Expanded Activity Against the Fastidious Gram-Negative Organisms Haemophilus influenzae and Moraxella catarrhalis, J. Med. Chem. 43 (2000).

[30] D.R. Buckle et al., Studies on 1, 2, 3-Triazoles. 13. (Piperazinylalkoxy)[l]benzopyrano[2, 3-d]-1, 2, 3-triazol-9(1H)-ones with Combined H1-Antihistamine and Mast Cell Stabilizing Properties, J Med Chem. 29(11) (1986) 2262-2267.

[31] D.J. Hupe et al., The Inhibition of Receptor-mediated and Voltage-dependent Calcium Entry by the Anti-proliferative L-651, 582, J Biol Chem. 266(16) (1991) 10136-10142.

[32] O. Makabe, H. Suzuki, S. Umezawa, Synthesis of D-arabinofuranosyl and 2'-deoxy-D-ribofuranosyl 1, 2, 3-Triazolecarboxamides, Bull. Chem. Soc. Jpn. 50 (1977) 2689-2693.

[33] S. Syed et al, Synthesis of novel 2-mercapto benzothiazole and 1, 2, 3-triazole based bis-heterocycles: Their anti-inflammatory and anti-nociceptive activities, Eur. J. Med. Chem. 49 (2012) 324-333.

[34] I.S. Bennett et al., 6-(substituted methylene)penems, potent broad spectrum inhibitors of bacterial beta-lactamase. V. Chiral1, 2, 3-triazolyl derivatives, J. Antibiot. 44(9) (1991) 969-978.

[35] E.K. Moltzen et al., Bioisosteres of Arecoline: 1, 2, 3, 6-Tetrahydro-5-pyridyl-Substituted and 3-Piperidyl-Substituted Derivatives of Tetrazoles and 1, 2, 3-Triazoles. Synthesis and Muscarinic Activity, J Med Chem. 37(24) (1994) 4085-4099.

[36] Z. Bascal et al., Novel Azole Derivatives Are Antagonists At The Inhibitory Gaba Receptor On The Somatic Muscle-Cells Of The Parasitic Nematode Ascaris- Suum, Parasitology. 112 (1996) 253-259.

[37] H. Wamhoff et al., 1, 2, 3-triazoles, Comprehensive Heterocyclic Chemistry, Elsevier Science, Oxford. 4 (1996) 1-126.

[38] C.F. Koelsch, Bromination of 3-Acetocoumarin, J. Am. Chem. Soc. 72(7) (1950) 2993-2995.

[39] T.V.P. Rao, V.R. Rao, A novel synthesis of thiazolyl, imidazolyl 2H-benzopyran-2-ones, Ind. J. Chem. 25 (1986) 413-415.

[40] Apoorva Patel, Synthesis, characterization and antimicrobial activity study of some heterocyclic substituted and heterocyclic fused coumarin derivatives, Ph.D. Thesis, Sardar Patel University, Vallabh Vidyanagar, (2011).

[41] V.R. Kamalraj, S. Senthil, P. Kannan, One-pot synthesis and the fluorescent behaviour of 4-acetyl-5-methyl-1, 2, 3-triazole regioisomers, Journal of Molecular Structure. 892 (2008) 210-215.

[42] Karl Eichinger et al., Neue Synthesen alkylaryl-und diaryl-disubstituierter Phenole und Salicylsäure-ethylester, Synthesis. 12 (1987) 1061-1064.

[43] National Committee for Clinical Laboratory Standards (NCCLS), 940, West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898, USA. Performance Standards for Antimicrobial Susceptibility Testing; Twelfth Informational Supplement (ISBN 1-56238-454-6), M100-S12 (M7), (2002).

Show More Hide
Cited By:

[1] N. Abdul-Ridha, A. Salmaan, R. Sabah, B. Saeed, N. Al-Masoudi, "Synthesis, cytotoxicity and in silico study of some novel benzocoumarin-chalcone-bearing aryl ester derivatives and benzocoumarin-derived arylamide analogs", Zeitschrift für Naturforschung B, Vol. 76, p. 201, 2021