This work is licensed under a
Creative Commons Attribution 4.0 International License
[1] N.C. Desai et al., Synthesis and Evaluation of N-Substituted Thiazolidine-2, 4-dione Containing Pyrazole as Potent Antimicrobial Agents, Anti-infact. Agents. 12 (2014) 85-94.
DOI: https://doi.org/10.2174/22113525113119990117[2] L.C. Chou et al., Synthesis of furopyrazole analogs of 1-benzyl-3-(5-hydroxymethyl-2-furyl)indazole (YC-1) as novel anti-leukemia agents, Bioorg. Med. Chem. 15 (2007) 1732-1740.
DOI: https://doi.org/10.1016/j.bmc.2006.12.001[3] M. Abdel-Aziz, G.E.A. Abuo-Rahma, A.A. Hassan, Synthesis of novel pyrazole derivatives and evaluation of their antidepressant and anticonvulsant activities, Eur. J. Med. Chem. 44 (2009) 3480-3487.
DOI: https://doi.org/10.1002/chin.200948129[4] D. Castagnolo et al., Synthesis, biological evaluation and SAR study of novel pyrazole analogues as inhibitors of Mycobacterium tuberculosis, Bioorg. Med. Chem. 16 (2008) 8587-8591.
DOI: https://doi.org/10.1016/j.bmc.2008.08.016[5] A. Palomer et al., Identification of novel cyclooxygenase-2 selective inhibitors using pharmacophore models, J. Med. Chem. 45 (2002) 1402-1411.
[6] N.C. Desai, G.M. Kotadiya, A.R. Trivedi, Studies on molecular properties prediction, antitubercular and antimicrobial activities of novel quinoline based pyrimidine motifs, Bioorg. Med. Chem. Lett. 24 (2014) 3126-3130.
DOI: https://doi.org/10.1016/j.bmcl.2014.05.002[7] A. Barakat et al., Synthesis and structure investigation of novel pyrimidine-2, 4, 6-trione derivatives of highly potential biological activity as anti-diabetic agent, J. Mol. Str. 1098 (2015) 365-376.
[8] M.M. Hanna, New pyrimido[5, 4-e]pyrrolo[1, 2-c]pyrimidines: Synthesis, 2D-QSAR, anti-inflammatory, analgesic and ulcerogenicity studies, Eur. J. Med. Chem. 55 (2012) 12-22.
DOI: https://doi.org/10.1016/j.ejmech.2012.06.048[9] H. Kaur et al., Primaquine–pyrimidine hybrids: Synthesis and dual-stage antiplasmodial activity, Eur. J. Med. Chem. 101 (2015) 266-273.
[10] R.K. Yadlapalli et al., Synthesis and in vitro anticancer and antitubercular activity of diarylpyrazole ligated dihydropyrimidines possessing lipophilic carbamoyl group, Bioorg. Med. Chem. Lett. 22 (2012) 2708-2711.
DOI: https://doi.org/10.1016/j.bmcl.2012.02.101[11] J.J. Bariwal ey al., Synthesis, characterization and anticancer activity of 3-aza-analogues of DP-7, Med. Chem. Res. 21 (2012) 4002-4009.
[12] R. Govindaraju, M. Gopalakrishnan, J. Thanusu, V. Kanagarajan, Synthesis, antibacterial and antifungal activities of biolabile (E)-1-4-morpholinophenyl)-3-aryl-prop-2-en-1-ones, Med. Chem. Res. 18 (2009) 341-350.
DOI: https://doi.org/10.1007/s00044-008-9131-2[13] A. Ranise et al., 3, 3-disubstituted 1-acyl-1-phenylthioureas with platelet antiaggregating and other activities, Farmaco. 46 (1991) 317-338.
[14] J.J. Hale et al., Phosphorylated Morpholine Acetal Human Neurokinin-1 Receptor Antagonists as Water-Soluble Prodrugs, J. Med. Chem. 43 (2000) 1234-1241.
[15] P. Avramova, N. Danchev, R. Buyukliev, T. Bogoslovova, Synthesis, Toxicological, and Pharmacological Assessment of Derivatives of 2-Aryl-4-(3-arylpropyl) morpholines, Arch. Pharm. 331 (1998) 342-346.
DOI: https://doi.org/10.1002/(sici)1521-4184(199811)331:11<342::aid-ardp342>3.3.co;2-y[16] N.C. Desai et al., Studies on Antimicrobial Evaluation of Some 1-(1-(1H-Benzo[d]imidazol-2-yl)ethylidene)amino)-6-(arylidene)amino)-2-oxo-4-phenyl-1, 2-dihydropyridine-3, 5-dicarbonitriles, Synth. Commun. 45 (2015) 2701-2711.
DOI: https://doi.org/10.1080/00397911.2015.1102286[17] N.C. Desai et al., Synthesis, characterization and antimicrobial screening of thiazole based 1, 3, 4-oxadiazoles heterocycles, Res. Chem. Intermed. 42 (2015) 3039-3053.
[18] N.C. Desai et al., Synthesis, biological evaluation and molecular docking study of some novel indole and pyridine based 1, 3, 4-oxadiazole derivatives as potential antitubercular agents, Bioorg. Med. Chem. Lett. (2016).
DOI: https://doi.org/10.1016/j.bmcl.2016.02.043[19] N.C. Desai et al., Facile synthesis of novel fluorine containing pyrazole based thiazole derivatives and evaluation of antimicrobial activity, J. Fluorine Chem. 142 (2012) 67-78.
DOI: https://doi.org/10.1016/j.jfluchem.2012.06.021[20] D.I. Brahmbhatt, A.R. Kaneria, A.K. Patel, N.H. Patel, Synthesis and antimicrobial screening of some 3-[4-(3-aryl-1-phenyl-1H-pyrazol-4-yl)-6-aryl-pyridin-2-yl] and 4-methyl-3-phenyl-6-[4-(3-aryl-1-phenyl-1H-pyrazol4-yl)-6-aryl-pyridin-2-yl]coumarin, Ind. J. Chem. 49B (2010).
DOI: https://doi.org/10.1002/chin.201047141[21] M.B. Siddesh, B. Padmashali, K.S. Thriveni, C. Sandeep, Synthesis of thiophene-linked pyrimidopyrimidines as pharmaceutical leads, J. Chem. Sci. 126 (2014) 821-826.
DOI: https://doi.org/10.1007/s12039-014-0614-z[22] National committee for clinical laboratory, Standards Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically approved standard, third ed. NCCLS Publication M7-A3, Villanova, PA, (1993).
[23] National committee for clinical laboratory standards, Reference Method for Broth Dilution Antifungal Testing of Yeasts, Proposed Standard, NCCLS Document M27-P; Villanova, PA, (1992).
[24] N.C. Desai, H.V. Vaghani, P.N. Shihora, A new hybrid approach and in vitro antimicrobial evaluation of novel 4(3H)-quinazolinones and thiazolidinone motifs, J. Fluorine Chem. 153 (2013) 39-47.
DOI: https://doi.org/10.1016/j.jfluchem.2013.05.022[25] N.C. Desai, K.M. Rajpara, V.V. Joshi, Synthesis and characterization of some new quinoline based derivatives endowed with broad spectrum antimicrobial potency, Bioorg. Med. Chem. Lett. 22 (2012) 6871-6875.
DOI: https://doi.org/10.1016/j.bmcl.2012.09.039[1] N. Desai, N. Bhatt, S. Joshi, "Synthetic modifications in ethyl 2-amino-4-methylthiazole-5-carboxylate: 3D QSAR analysis and antimicrobial study", Synthetic Communications, p. 1, 2019
DOI: https://doi.org/10.1080/00397911.2019.1587777