Subscribe to our Newsletter and get informed about new publication regulary and special discounts for subscribers!

ILCPA > Volume 68 > The Effects of Additive TiO2 Nanoparticles on the...
< Back to Volume

The Effects of Additive TiO2 Nanoparticles on the Energy Gap of DCM Doped with PS Thin Films

Full Text PDF


In this work thin films containing laser dye (DCM) doped with polystyrene (PS) were prepared using casting method. Titania (TiO2) nanoparticles also were synthesized using sol gel technique. Characteristics of the tetania were done using XRD patter, and the characteristic peak of anatase is sharper and clear to observe, in particular at 25.40° degree. While scanning electron microscopy (SEM) was used to achieve the morphology of TiO2 samples, and to determine the sizes of nanoparticles. Different titania nanoparticle densities (0.882×1020, 1.765×1020, 2.648×1020, 3.530×1020 and 4.413×1020cm-3) were co-doping with dye doped polymer and study the effect of this addition on the optical properties and electronic transition energy gaps in cases of both direct and indirect transitions.


International Letters of Chemistry, Physics and Astronomy (Volume 68)
J. F. Odah "The Effects of Additive TiO2 Nanoparticles on the Energy Gap of DCM Doped with PS Thin Films", International Letters of Chemistry, Physics and Astronomy, Vol. 68, pp. 71-81, 2016
Online since:
Jul 2016

[1] A. Maaroufi, K. Haboubi, A. El Amarti, F. Car-mona, Electrical resistivity of polymeric matrix loaded with nickel and cobalt powders, Journal of Materials Science 39(2004), 265–270.

[2] Y. Xi, H. Ishikawa, Y. Z. Bin, M. Matsuo, Positive temperature coefficient effect of LMWPE-UHMWPE blends filled with short carbon fibers, Carbon 42 (2004), 1699–1706.

[3] H. Zois, Y. P. Mamunya, L. Apekis, Structure and dielectric properties of a thermoplastic blend con-taining dispersed metal, Macromolecular Sympo-sia 198(2003), 461–472.

[4] M. Moniruzzaman, K. I. Winey, Polymer nanocomposites containing carbon nanotubes, Macromolecules 39(2006), 5194–5205.

[5] T. W. Ebbesen, Carbon Nanotubes, Annual Review of Materials Science 24(1994), 235–264.

[6] H. Zois, L. Apekis, Y. P. Mamunya, Structure-electrical properties relationships of polymer com-posites filled with Fe-powder, Macromolecular Symposia 194 (2003), 351–359.

[7] R. Schueler, J. Petermann, K. Schulte, H. P. Wentzel, Agglomeration and electrical percolation behavior of carbon black dispersed in epoxy resin, J. App. Poly. Sci. 63(1997), 1741–1746.

[8] J. L. Alan kin-tak Lau, Multifunctional Polymer Nanocomposites, Taylor and Francis Group, LLC, (2011).

[9] Wang Y., Flaim T., Mercado R., Fowler S., Holmes D., Planje C. Hybrid high refractive index polymer coatings,: Proceedings of SPIE 5724 (2005), 42-49.

[10] Cheong W. C., Yuan X. C., Koundriachov V., Yu W. X.: Opt. Express, 10(2002), 586.

[11] Kim W. S., Yoon K. B., Bae B. S.: J. Mater. Chem., Nanopatterning of photonic crystals with a photocurable silica–titania organic–inorganic hybrid material by a UV-based nanoimprint technique, 15(2005), 4535-4539.

[12] García-Moreno I., Costela A., Cuesta A., García O., del Agua D., Sastre R.: J. Synthesis, Structure, and Physical Properties of Hybrid Nanocomposites for Solid-State Dye Lasers, Phys. Chem. B, 109 (2005), 21618-21626.

[13] Lin D. J., Chen C. C., Su Y. C., Huang S. H., Cheng L. P. Preparation of silica-filled poly(2-hydroxymethyl methacrylate) nanocomposites cured by photoirradiation during the sol–gel process,: J. Appl. Polym. Sci., 94 (2004), 1927-(1935).

[14] Vollath D., Szabo D. V. Synthesis and Properties of Nanocomposites,: Adv. Eng. Mater., 6 (2004), 117-127.

[15] F. Sayılkan, M. Asilturk, P. Tatar, N. Kiraz, S. Sener, E. Arpac, H. Sayılkan, Photocatalytic performance of Sn-doped TiO2 nanostructured thin films for photocatalytic degradation of malachite green dye under UV and VIS-lights, Mater. Res. Bull. 43(2008).

[16] B.R. Sankapal, S.D. Sartale, M.C. Lux-Steiner, A. Ennaoui, C. R. Chemical and electrochemical synthesis of nanosized TiO2 anatase for large-area photon conversion, Chimie 9 (2006) 702-707.

[17] N. Venkatachalam, M. Palanichamy, V. Murugesan, Sol–gel preparation and characterization of nanosize TiO2: Its photocatalytic performance, Mater. Chem. Phys. 104(2007) 454-459.

[18] C. Ribeiro, C. Vila, J.M.E. Matos, J. Bettini, E. Longo, E.R. Leite, Role of the Oriented Attachment Mechanism in the Phase Transformation of Oxide Nanocrystals, Chem. Eur. J. 13 (2007) 5798-5803.

[19] C. Ribeiro, C. Vila, D.B. Stroppa, J. Bettini, V.R. Mastelaro, E. Longo, E.R. Leite, Anisotropic Growth of Oxide Nanocrystals: Insights into the Rutile TiO2 Phase, J. Phys. Chem. C 111(2007) 5871-5875.

[20] D.Y. Godovski, Electron behavior and magnetic properties of polymer nanocomposites, Adv. Polym. Sci. 119 (1995) 79–122.

[21] L. Saadoun, J. A. Ayllon, J. Jimenez- Becerril, J. Peral, X. Domenech, and R. Rodriguez-Clemente, Mater. Res. Bull. 35(2000) 193.

[22] Yu-Chang Liu, Yun-Fang Lu, Yz-Zhen Zeng, Chi-Hung Liao, Jen-Chieh Chung, and Tsong-Yang Wei, Nanostructured mesoporous titanium dioxide thin film prepared by sol-gel method for dye sensitized solar cell, International journal of photo energy, 2011(2011).

[23] S. Popov, Dye photodestruction in a solid-state dye laser with a polymeric gain medium , Appl. Opt. 37, (1998) 6449-6455.

[24] Ahmed Namah Mohamed Studying the optical properties of thin films prepared from polystyrene doped with DCM dye, 61 (2015)176-181.

[25] F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, and R. Sastre, Laser action from rhodamine 6G-doped poly (2-hydroxyethyl methacrylate) matrices with different cross linking degrees, Chem. Phys. Lett., 209, (1993) 352.

[26] R.J. Nedumpara, B. Paul, A. Santhi, P. Radhakrishnan and V.P.N. Nampoori, Photoacoustic Investigations on the Photostability of Coumarin 540-Doped Pmma, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60(2004) 1–2.

[27] A. Costela, I. Garcia-Moreno, C. Gomez, M. Alvarez, F. Amat-Guerri, M. Liras, and R. Sastre, New Efficient and Stable Polymeric Solid State Lasers Based on Modified Dipyrromethene., BF2 complexes SPIE, 5460(2004).

[28] R.P. Haugland, Handbook of Fluorescent Probes and Research Chemicals, Molecular Probes: Eugene, OR. (1999).

[29] G. Streetman Banerjee, Solid State Electronic Devices, the university of Texas at Austin, (2006).

[30] C. Kittel, Introduction to Solid State Physics, 5th ed., Willy, New York, (1981).

[31] D. Neamen, Semiconductor Physics and Devices, University of New Mexico, (1992).

[32] J. I. Pankove, Prentice Hall, New York, (1971).

[33] Ulrich, H., Introduction to Industrial Polymers, New York, (1982).

[34] M. Balkanski, Optical Properties of Solids, vol2, Amsterdam, New York. Oxford (1992).

[35] B. O Seraphin, optical Properties of solid New Developments, company, American, Elsevier Publishing-New York, (1976).

[36] Y.T. Ravikiran, M.T. Lagare, M. Sairam, N.N. Mallikajuna, B. Sreebhar , S. Manohar , A.G. MacDiarmid, and T.M. Aminabhavi, Synthesis, characterization and low frequency AC conductivity of polyaniline/niobium pentoxide composites, Synthetic Metals 156, (2006).

[37] S. Karvinen, The Effect of Trace Element Doping of TiO2 on the Crystal Growth and on the Anatase to rutile Phase Transformation of TiO2, Solid State Sciences, 5, (2003) 811-819.

Show More Hide